The 12th Romanian Master of Mathematics Competition

Day 1: Friday, February 28, 2020, Bucharest

Language: English

Problem 1. Let ABC be a triangle with a right angle at C. Let I be the incentre of triangle ABC, and let D be the foot of the altitude from C to AB. The incircle ω of triangle ABC is tangent to sides BC, CA and AB at A_1 , B_1 and C_1 , respectively. Let E and F be the reflections of C in lines C_1A_1 and C_1B_1 , respectively. Let K and L be the reflections of D in lines C_1A_1 and C_1B_1 , respectively.

Prove that the circumcircles of triangles $A_1 EI$, $B_1 FI$ and $C_1 KL$ have a common point.

Problem 2. Let $N \ge 2$ be an integer, and let $\mathbf{a} = (a_1, \ldots, a_N)$ and $\mathbf{b} = (b_1, \ldots, b_N)$ be sequences of non-negative integers. For each integer $i \notin \{1, \ldots, N\}$, let $a_i = a_k$ and $b_i = b_k$, where $k \in \{1, \ldots, N\}$ is the integer such that i - k is divisible by N. We say \mathbf{a} is \mathbf{b} -harmonic if each a_i equals the following arithmetic mean:

$$a_i = \frac{1}{2b_i + 1} \sum_{s=-b_i}^{b_i} a_{i+s}.$$

Suppose that neither \mathbf{a} nor \mathbf{b} is a constant sequence, and that both \mathbf{a} is \mathbf{b} -harmonic and \mathbf{b} is \mathbf{a} -harmonic.

Prove that at least N + 1 of the numbers $a_1, \ldots, a_N, b_1, \ldots, b_N$ are zero.

Problem 3. Let $n \ge 3$ be an integer. In a country there are *n* airports and *n* airlines operating two-way flights. For each airline, there is an odd integer $m \ge 3$, and *m* distinct airports c_1, \ldots, c_m , where the flights offered by the airline are exactly those between the following pairs of airports: c_1 and c_2 ; c_2 and c_3 ; \ldots ; c_{m-1} and c_m ; c_m and c_1 .

Prove that there is a closed route consisting of an odd number of flights where no two flights are operated by the same airline.

Each of the three problems is worth 7 points. Time allowed $4\frac{1}{2}$ hours.

The 12^{th} Romanian Master of Mathematics Competition

Day 2: Saturday, February 29, 2020, Bucharest

Language: English

Problem 4. Let \mathbb{N} be the set of all positive integers. A subset A of \mathbb{N} is *sum-free* if, whenever x and y are (not necessarily distinct) members of A, their sum x + y does not belong to A.

Determine all surjective functions $f \colon \mathbb{N} \to \mathbb{N}$ such that, for each sumfree subset A of \mathbb{N} , the image $\{f(a) \colon a \in A\}$ is also sum-free.

Note: a function $f : \mathbb{N} \to \mathbb{N}$ is surjective if, for every positive integer n, there exists a positive integer m such that f(m) = n.

Problem 5. A *lattice point* in the Cartesian plane is a point whose coordinates are both integers. A *lattice polygon* is a polygon all of whose vertices are lattice points.

Let Γ be a convex lattice polygon. Prove that Γ is contained in a convex lattice polygon Ω such that the vertices of Γ all lie on the boundary of Ω , and exactly one vertex of Ω is not a vertex of Γ .

Problem 6. For each integer $n \ge 2$, let F(n) denote the greatest prime factor of n. A strange pair is a pair of distinct primes p and q such that there is no integer $n \ge 2$ for which F(n)F(n+1) = pq.

Prove that there exist infinitely many strange pairs.

Each of the three problems is worth 7 points. Time allowed $4\frac{1}{2}$ hours.