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ALGEBRA

A1l. Let ag be an arbitrary positive integer. Let {a,} be an infinite sequence of positive
integers such that for every positive integer n the term a, is the smallest positive integer
such that ap + ay + ... + a, is divisible by n. Prove that there is a positive integer N such
that a,+1 = a, for all n > N.

Alb.! Let ay be an arbitrary positive integer. Consider the infinite sequence (a,)n>1,
defined inductively as follows: given ag,ay,...,a,_1 define the term a, as the smallest
positive integer such that ay + a; + ... + a, is divisible by n. Prove that there exists a
positive integer M such that a,,, = a, for all n > M.

A2. Find all functions f : R — R such that:

flzy) = yf(z) + 2+ f(fly) — f(z))
for all z,y € R.

A3. Let a, b, c be real numbers such that 0 < a < b < ¢. Prove that if
a+b+c=ab+bc+ca >0,

then vbe(a + 1) > 2. When does the equality hold?

A4. Let a;j,1=1,2,...,mand j =1,2,...,n, be positive real numbers. Prove that
m n 1 -1 n m -1 =1
5 (Z ——) < (s (z)
f=1 y=1 J=] i=1

When does the equality hold?

A5. Let a, b, c be positive real numbers, such that (ab)? + (bc)? + (ca)? = 3. Prove that

(@2—a+ 1) =b+1)(c?—c+1) > 1.

'Proposed by PSC.
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GEOMETRY

G1. Let ABCD be a square of center O and let M be the symmetric of the point B
with respect to the point A. Let £ be the intersection of CM and BD, and let S be the
intersection of MO and AF. Show that SO is the angle bisector of ZESB.

G2. Let be a triangle AABC with m(ZABC) = 75° and m(£ZACB) = 45°. The angle
bisector of ZCAB intersects C'B at the point D. We consider the point E € (AB), such
that DE = DC. Let P be the intersection of the lines AD and CE. Prove that P is the
midpoint of the segment AD.

G3. Let ABC be a scalene and acute triangle, with circumcentre O. Let w be the circle
with centre A, tangent to BC' at D. Suppose there are two points F' and G on w such
that F'G L AO, ZBFD = ZDGC and the couples of points (B, F') and (C,G) are in
different halfplanes with respect to the line AD. Show that the tangents to w at F' and
G meet on the circumcircle of ABC.

G4. Given an acute triangle ABC, let M be the midpoint of BC and H the orthocentre.
Let I' be the circle with diameter HM, and let X,Y be distinct points on I" such that
AX, AY are tangent to I'. Prove that BXYC is cyclic.

G5. Let ABC (BC > AC) be an acute triangle with circumcircle k& centered at O.
The tangent to k at C intersects the line AB at the point D. The circumcircles of
triangles BC'D, OCD and AOB intersect the ray CA (beyond A) at the points @, P
and K, respectively, such that P € (AK) and K € (PQ). The line PD intersects the
circumcircle of triangle BK () at the point T', so that P and T are in different halfplanes
with respect to BQ). Prove that TB = T'Q.

G6. Let ABC be an acute triangle, and AX, AY two isogonal lines. Also, suppose
that K,S are the feet of perpendiculars from B to AX,AY, and T, L are the feet of

perpendiculars from C to AX, AY respectively. Prove that KL and ST intersect on BC.

G7. Let AD, BE, and CF denote the altitudes of triangle AABC. Points E’ and F’ are
the reflections of E and F' over AD, respectively. The lines BF' and CE’ intersect at X,
while the lines BE' and C'F" intersect at the point Y. Prove that if H is the orthocenter
of AABC, then the lines AX,Y H, and BC are concurrent.
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G8. Given an acute triangle ABC, (c) is circumcircle with center O and H the orthocenter
of the triangle ABC'. The line AO intersects (c) at the point D. Let Dy, Dy and H,, H3
be the symmetrical points of the points D and H with respect to the lines AB, AC
respectively. Let (c;) be the circumecircle of the triangle AD;D,. Suppose that the line
AH intersects again (c;) at the point U, the line HyHj3 intersects the segment DD, at
the point K, and the line DHj intersects the segment U D, at the point L. Prove that
one of the intersection points of the circumcircles of the triangles D; K1 Hy and UDL; lies
on the line K L;.

G9. Given semicircle (¢) with diameter AB and center O. On the (c¢) we take point C
such that the tangent at the C intersects the line AB at the point E. The perpendicular
line from C to AB intersects the diameter AB at the point D. On the (c¢) we get the points
H, Z such that CD = CH = CZ. The line HZ intersects the lines CO,CD, AB at the
points S, I, K respectively and the parallel line from I to the line AB intersects the lines
CO,CK at the points L, M respectively. We consider the circumcircle(k) of the triangle
LM D, which intersects again the lines AB, CK at the points P, U respectively. Let (e;),
(e2), (es) be the tangents of the (k) at the points L, M, P respectively and R = (e;) N (e3),
X = (ez)N(es), T = (e1) N (e3). Prove that if () is the center of (k), then the lines RD,
TU, XS pass through the same point, which lies in the line 1Q.
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NUMBER THEORY

TN1. Let P be the set of all prime numbers. Find all functions f : P — P such that

f(p)!@ + ¢ = f(q)/® + pf

holds for all p,q € P.

TIN2. Let § C {1,...,n} be a nonempty set, where n is a positive integer. We denote
by s the greatest common divisor of the elements of the set S. We assume that s # 1 and
let d be its smallest divisor greater than 1. Let 7' C {1,...,n} be a set such that S C T

and |T| > 1+ [E
d
TN2b.? Let n(n > 1) be a positive integer and U = {1,...,n}. Let S be a nonempty
subset of U and let d (d # 1) be the smallest common divisor of all elements of the set
S. Find the smallest positive integer k such that for any subset T" of U, consisting of k
elements, with S C T, the greatest common divisor of all elements of T is equal to 1.

]. Prove that the greatest common divisor of the elements in T' is 1.

’Proposed by PSC.
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COMBINATORICS

C1. 100 couples are invited to a traditional Moldovan dance. The 200 people stand in a
line, and then in a step, two of them (not necessarily adjacent) may swap positions. Find
the least C' such that whatever the initial order, they can arrive at an ordering where
everyone is dancing next to their partner in at most C steps.

C2. Suppose that the numbers {1,2,...,25} are written in some order in an 5 X 5 array.
Find the maximal positive integer k, such that the following holds. There is always an
2 X 2 subarray whose numbers have a sum not less than k.

C2b.? An 5 x 5 array must be completed with all numbers {1,2,...,25}, one number in
each cell. Find the maximal positive integer k, such that for any completion of the array
there is a 2 X 2 square (subarray), whose numbers have a sum not less than k.

C3. Anna and Bob play a game on the set of all points of the form (m,n) where m,n
are integers with |m|, |n| < 2019. Let us call the lines z = +2019 and y = £2019 the
boundary lines of the game. The points of these lines are called the boundary points. The
neighbours of point (m,n) are the points (m + 1,n), (m — 1,n), (m,n + 1), (m,n — 1).

Anna starts with a token at the origin (0,0). With Bob playing first, they alternately
perform the following steps: At his turn, Bob deletes two points on each boundary line.
On her turn Anna makes a sequences of three moves of the token, where a move of the
token consists of picking up the token from its current position and placing it in one of
its neighbours.

To win the game Anna must place her token on a boundary point before it is deleted
by Bob. Does Anna have a winning strategy?

[Note: At every turn except perhaps her last, Anna must make exactly three moves.|

C4. A town-planner has built an isolated city whose road network consists of 2N round-
abouts, each connecting exactly three roads. A series of tunnels and bridges ensure that all
roads in the town meet only at roundabouts. All roads are two-way, and each roundabout
is oriented clockwise.

Vlad has recently passed his driving test, and is nervous about roundabouts. He starts
driving from his house, and always takes the first exit at each roundabout he encounters.
[t turns out his journey includes every road in the town in both directions before he arrives
back at the starting point in the starting direction. For what values of /N is this possible?

3Proposed by PSC.
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ALGEBRA

A1l. Let ag be an arbitrary positive integer. Let {a,} be an infinite sequence of positive
integers such that for every positive integer n the term a, is the smallest positive integer
such that ag + a; + ... + a, is divisible by n. Prove that there is a positive integer N such
that a,41 = a, foralln > N.

A1lb.* Let ag be an arbitrary positive integer. Consider the infinite sequence (a,)n>1,
defined inductively as follows: given ag,as,...,a,_1 define the term a, as the smallest
positive integer such that ag + a; + ... + a, is divisible by n. Prove that there exists a
positive integer M such that a,,.; = a, for all n > M.

Solution. Define b, = %+t==tn for every positive integer n. According to condition,
b, is a positive integer for every positive integer n.

Since a,.1 is the smallest positive integer such that
integer and

ag+a1+...+an+an+1
n+1

is a positive

ap+ar+..+a+b,  ata+..+a, + 0T g, 4y 4 +a,
n-+1 n+1 n

= bn&

which is a positive integer, we get a,.1 < b, for every positive integer n.
Now from last result we have
Qo+ a1+ ... + ap + Q@naa < agp+ a; + ... + a, + b, B

n+1 — —E}ﬂ.
bt n+1 — n+1

Hence the infinite sequence of positive integers by, by, ... is non-increasing. So there
exists a positive integer T such that for all n > T' we have
Qg+ a1 + ... + An + Qny1 Qg+ A1+ ... + Qn P

b = =) .
ntl - n—+1 n

nlag+ a1+ ...+ ap +api1) = (n+1)(ag+ a1 + ... + a,) =

ag+a; + ...+ ay
Napt+1 =+ a1 + ... + G = Qa1 = - =y,

Similarly we get a,4 92 = bn4+1, which follows that a,43 = b,+1 = b, = a,+1. Hence,
taking M =T + 1, we can state that a,4+1 = a, for every n > M. [J

4Proposed by PSC.
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A2. Find all functions f : R — IR such that:

flzy) = yf(z) +z+ f(f(y) — f(2))

for all z,y € R.

Solution. Firstly, considering (z,y) = (1,1) we get f(0) = —1.
Then, setting y = 1, we see that —z = f(f(1) — f(x)), so f must be surjective.
Now let (z,y) = (a,0) and (0, a) to get

—1l=a+ f(-1— f(a)) and —1=—a+ f(f(a)+1).

Since f is surjective, for any real z we may write z = f(a) + 1 and then adding these
two results gives f(z) + f(—z) = —2.
Letting (z,y) = (a,1) and (1, a) we get

—a = f(f(1)— f(a)) and f(a)=af(1)+1+ f(f(a)— f(1)).

Adding these, and using the previous result with z = f(a) — f(1) gives

fla)=af(1)+a—-1

So f(z) = kx — 1 for all z, for some fixed k. Substituting back into the original
equation we see that 1 and —1 are the only possibilities for £k and that both of these
values do give a function that works. [

Alternative solution. We prove that f(z) =z — 1 and f(z) = —z — 1 are the only
solutions. Let z = y = 1; this gives f(1) = f(1) + 1+ f(0), so f(0) = —1. Then let
(z,y) =(0,a+1), (—a —1,0), and (—a, 1) to give the three equalities

f0)=(a+1)f(0)+ f(fla+1) - f(0)) = a=f(fla+1)+1)
f(0)=—-a—-1+ f(f(0) = f(-a—1)) = a=f(-f(-a—-1)-1)
f(—a) = f(—a) —a+ f(f(1) — f(a)) = a=f(fQ1)- f(-a)).

The last of these three implies f is bijective, hence we have

flat)+1=—f(-a—-1)-1= f(1) = f(-a)

From the second of these equalities we can deduce the recurrence relation f(z) =
fle—1)+ f(1)+1,s0if c= f(1)+ 1, we have f(z) = cx — 1 for all x € Z. Substituting
into the original equation we see that ¢ =1,s0 f(z) =z—1or f(z) = —2z—1for z € Z.

In the first case, let £ = 1. Then f(y) = 1+ f(f(y)), which implies f(z) = x —1 for all
z as f is surjective. In the second case, set z = —1, so f(—y) = -1+ f(f(y)). However
from above we have f(a+ 1)+ f(—a—1) =2,s0 f(f(y)) — 1= f(—y) = —f(y) — 2, and
we have f(z) = —z — 1 by surjectivity. [J
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A3. Let a,b, c be real numbers such that 0 < a < b < ¢. Prove that if
a+b+c=ab+bc+ca>0,
then x/b_c(a + 1) > 2. When does the equality hold?

Solution. Let a +b+ ¢ = ab+ bc+ ca = k. Since (a + b+ ¢)? > 3(ab + bc + ca), we get
that k? > 3k. Since k > 0, we obtain that k > 3.

We have bc > ca > ab, so from the above relation we deduce that be > 1.
By AM-GM, b+ ¢ > 2v/bc and consequently b + ¢ > 2. The equality holds iff b = c.
The constraint gives us

b+ c— be be — 1 be—1  vbe(2 — Vbe)
= =1-— >1= = .
b+c—1 b+c—1 2/be — 1 2vbe — 1

For v/bc = 2 condition a > 0 gives v/be(a+1) > 2 with equality iff a = 0 and b = ¢ = 2.
For vbe < 2, taking into account the estimation for a, we get

a

J

be(2 — vbe) be
avbe > a1 mgm_l(Q—\/Ej.

S;nce 2—\},—%-%: > 1, with equality for be = 1, we get vbe(a + 1) > 2 with equality iff
a=b=c=1.

For v/bc > 2 we have vbc(a +1) > 2(a +1) > 2.

The proof is complete.

The equality holds ifa=b=c=1ora=0and b=c=2. U
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A4. Let a;;,i1=1,2,...,mand j=1,2,...,n, be positive real numbers. Prove that
m n 1 -1 n m -1\ ~*
S(X1) <(%(5w)
i=1 \j=1 4 j=1 \i=1

When does the equality hold?

Solution. We will use the following

Lemma. If ay,as,...,ay,, b1,bs,...,b, are positive real numbers then
1 1 1
The equality holds when E—‘:- =B == %:
Proof. Set x; = é and y; = é or each 7 =1,2,...,n. Then we have to prove that

ity gm0
< Z il < = J= |

- < or = =

- < =z, Ti+Yi
. ; — e, j— . :
i=1 =1 j=1 1 =1

7

T
Subtract ) z;, and we have to prove that
j=1

Oor

n 2
> (5 4)
W & = n n '

=1 \Ti T Y 2%+ D
i=1 j=1
The last one is a consequence of Cauchy-Schwarz inequality and thus the lemma. is proved.

We will now prove that repeating the lemma we will get the desired inequality. For
example, if a1, as, ..., an, by, ba, ..., bn, €1, Cs, ..., ¢, are positive reals then by repeating lemma
two times we get

T 1 + n 1 —l_ m 1 i: n ] + mn i 5 ﬂ 1 —. = , _
j; E j;l E j‘gl E _'_','gl Gj+bj Jg E j';l (ﬂ3+bJ}+EJ ;1 ﬂj'{"bj—l—ﬂj
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Using similar reasoning we can prove by induction that

3=1

j=1

which is the desired result.
The equality holds iff

foralli=1,2,...,m. O

i(zﬂ:ﬂ%)l—i‘nl 5. 1 i

13
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A5. Let a,b, ¢ be positive real numbers, such that (ab)? + (bc)? + (ca)? = 3. Prove that
(a*—a+1)(B*—b+1)(c®—c+1) > 1.
Solution. The inequality is equivalent with
(> —a+1)(*=b+1)(c*—c+1) > 1 (a®+1)(B*+1)(*+1) > (a+1)(b+1)(c+1).
Thus:

H(a3+l)—-H (@+1) Zu +Zab + (abe)? Zu—Zub—-mbcz

cyc cyc

E( +a -I-Z (a®b® + ab) + [(abc)® + 1+ 1] _Zza_gzﬂb-abc- AM%GM

cyc cyc cyc

S a*b?=3

ZZG —I-QZ 252+2ab{:—22a—22ﬂ.b~ 2 =

cyec

Z(a2—2a+1)+ (Zaﬂ-i-?abc-l-l—zzab) -
cyc cyce

cye

Y (a—1) (Za +2ubc+1—22ab) (Zu +2ubc+1—22ub)

cCyc

We will show that Y a*+2abc+1—-25% ab>0 (1) for every a,b,c > 0.
cyc

cyc
Firstly, let us observe that
(14 2abc)(a+ b+ c) = (1 + abc + abe)(a + b+ ¢) > 9V a2b2c2abe = Jabe,
implying

9abc

a+b+c
Then, using Schur’s Inequality, (i.e. ) a(a — b)(a — ¢) > 0, for any a,b,c > 0) we

cyc

9abc
;rx?EQ;ub— —gE

1 + 2abc >

obtain that

Returning to (1), we get:

Za +2ﬂbc+1—22ab> Zub—afabbic)+2abc+l—22ab=

cyc cyc cyc
9abc
a+b+ec™
which gives us [[(a® + 1) — [[(a + 1) > 0 and, respectively, [[(a* —a+1) > 1. [
cyc

cyc cyc

(1 + 2abc) —

1



BMO 2019 Geometry. Solutions 15

GEOMETRY

G1. Let ABCD be a square of center O and let M be the symmetric of the point B

with respect to the point A. Let E be the intersection of CM and BD, and let S be the
intersection of MO and AE. Show that SO is the angle bisector of ZESB.

Solution. We have

DC = DA
/EDC =/EDA = ADEC = ADFEA= /DAE = /DCE ().
DE = DE

Let CM N AD = {P}, then follows ACDP = ABAP and ZPCD = ZPBA (*x).

Figure 1: G1

From (x) and (xx) follows ZDCP = £LDAFE = LPBA.
Now, let "= AEN PB.
In the triangle S’AB we have

m(£S'AB) + m(£S'BA) = m(£S'AB) + m(£PAS') = m(£ZPAB) = 90°,

so m(£BS'A) = 90°.
We show that AF, BP and MO are concurrent.
In the triangle AEM B we apply the Ceva theorem, so

EP MA Bo_lﬁg_@
PM AB OE PM  BO

is true because PO is a midsegment in the triangle DAB (PO||AB).

EP EO
According to the Thales theorem in the triangle EM B, PV~ OB and AE, BP,

MO are concurrent in S’, which is in fact S.
Let PBNCA = {N}. Because ESNQO has m(ZEON)+m(£ZESN) = 180°, it follows
ESNO cyclic and m(£ZESO) = m(£LENQO) = m(£LDAO) = 45°. O
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G2. Let be a triangle AABC with m(£ZABC) = 75° and m(£LACB) = 45°. The angle
bisector of ZC AB intersects CB at the point D. We consider the point E € (AB), such
that DE = DC'. Let P be the intersection of the lines AD and C'E. Prove that P is the
midpoint of the segment AD.

Solution. Let P’ be the midpoint of the segment AD. We will prove that P’ = P. Let
F € AC such that DF | AC. The triangle CDF is isosceles with F'D = F'C and the
triangle DP'F is equilateral as m(ZADF) = 60°. Thus, the triangle FCP’ is isosceles
(FP'= FC) and m(£LFCP"y =m(4LFP'C) = 15°.

C

Figure 2: G2

We prove now that m(ZFCE) = 15°.

Let M be the point on [AB such that the triangle ACM is equilateral. As AADC =
ANADM(SAS) = DC = DM(= DF) and m(£LAMD) = m(£LACD) = 45°. 1t follows
that the triangle ADME is isosceles with m(ZDME) = m(£LDEM) = 45°. In the
triangle ABDE we have m(£BDFE) = 60°and thus m(ZCDFE) = 120°.As the triangle
DC'E is isoscel with m(£ZDCFE) = m(£DEC') = 30°. Finaly m(£LACFE) = m(£LACB) —
m(£BCE) = 45° — 30° = 15°.

Thus m(£LFCP') = 15° = m(£LFCE), and therefore P’ € CE and P’ = P, which
means that P is the midpoint of the segment AD.

Alternative solution: In the way as above we prove that m(ZBCE) = 15°.

So the quadrilateral ACDFE is inscribed in a circle. Now, applying the sine rules to
ADPE and AAPFE we get

DP  PE AP  PE N DP sinl05° PE sin30°
sin30° sinl15°’ sin105° sin30° ~ sin30° AP  sinl5° PE '’
DP sin 30° 1 1 1

= 1.

AP sinl05°-sin15° 4 -sin 105° - sin 15°
Thus, QP = AP. O

2 - (cos 90° — cos 120°) 2. :
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G3. Let ABC be a scalene and acute triangle, with circumcentre O. Let w be the circle

with centre A, tangent to BC' at D. Suppose there are two points F' and G on w such

that FG 1L AO, ZBFD = ZDGC and the couples of points (B, F') and (C,G) are in
different halfplanes with respect to the line AD. Show that the tangents to w at F' and
G meet on the circumcircle of ABC.,

Solution. Consider any two points F,G on w such that ZBFD = ZDGC. Exploiting
the isosceles triangles AAFG, AAFD, and AADG, we deduce (using directed angles
throughout):

/DBF — /GCD = 180° — /BFD — /BDF — (180° — ZDGC — /CDG) &
/CDG—/FDB = %-(49,4@— /DAF) = %-[(1300-2-4,-«-11)0) — (180°—2- ZADF)] =

/ADF — /GDA = /DFA — /AGD = /DFG — /FGD 2 /BFG — /FGC,
where we use ZBFD = /ZDGC at (*). Thus BFGC is cyclic.

Figure 3: G3

Now, if in addition FFG 1L AQ, then since A is the centre of w, in fact AO is the
perpendicular bisector of F'G. But by definition, since ABC is scalene, AO meets the
perpendicular bisector of BC at O. Hence O is the centre of BFGC, and thus in fact
BFAGC is cyclic. But then the lines perpendicular to AF at F, and AG at G (the
tangents to w) must intersect at E, the point antipodal to A on ®BFAGC'. [

Alternative solution: Let the circumcircle of ABC be I'. From the conditions, G is
the reflection of F' in the line AO. Let B’, D' be the reflections of B, D across this same
line AO. Clearly D’ also lies on w and B’ lies on I'.

Then, using directed angles, ZCGD = ZDFB = ZB'GD’ so

/B'GC = /B'GD' — /CGD' = /CGD — /CGD' = /D'GD — %/_’D’AD _ JOAD.
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Then, exploiting the isogonality property that ZDAB = ZCAO, we have

LOAD = LCAB - 2/DAB = /ABC - /BCA = /ABC - /B'BA = /B'BC.

So G lies on I', and by the reflection property so does F.
But then, as in the previous solution, the tangents at F' and G to w must intersect at
E, the point antipodal to A on I'. [
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G4. Given an acute triangle ABC, let M be the midpoint of BC and H the orthocentre.
Let I' be the circle with diameter HM, and let X,Y be distinct points on I' such that
AX, AY are tangent to I'. Prove that BXYC is cyclic.

Solution. Let D be the foot of the altitude from A to BC, which also lies on I'. Let O
be the circumcentre of AABC. Since ZHDM = 90°, note that rays HD and HM meet
the circumcircle at points which are reflections in OM. Then, since ZBAD = ZOAC,
we recover the well-known fact that ray HM meets the circumcircle at A’, the point
antipodal to A. Therefore, the ray M H meets the circumcircle at a point 7" such that
/ZMTA = 90°. Note that T, D lie on the circle with diameter AM.

%‘
RS

Figure 4: G4

Now, study K, the centre of I'. Clearly AXKY is cyclic, with diameter AK, so T'
also lies on this circle. We can now apply the radical axis theorem to the three circles
QAT XKY,ATDM, ©HXDMY to deduce that AT, XY, DM concur at a point, Z.

Then, by power of a point in QAT XY, we have ZX - ZY = ZT - ZA, but also by
power of a point in the circumcircle, we have ZA - ZT = ZB - ZC. Therefore

ZX - -ZY =ZB- ZC,

and the result follows. [
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G5. Let ABC (BC > AC) be an acute triangle with circumcircle k& centered at O.
The tangent to k at C' intersects the line AB at the point D. The circumcircles of
triangles BCD, OCD and AOB intersect the ray CA (beyond A) at the points @, P
and K, respectively, such that P € (AK) and K € (PQ). The line PD intersects the
circumcircle of triangle BK (@ at the point 7', so that P and 7" are in different halfplanes
with respect to BQ. Prove that TB = TQ.

Solution. As DC(C is tangent to k£ at C then ZOCD = 90°. Denote by X the midpoint
of AB. Then ZOX A = 90° because of OX is the perpendicular bisector of the side AB.
The pentagon PXOC'D is inscribed in the circle with diameter OD, hence ZPXA =
LPXD = LPCD = ZQCD = ZQBA (the latter is due to QBCD being cyclic). We
deduce that PX || @B and that P is the midpoint of AQ, so AP = PQ.

C

Figure 5: G5

Now let 7} be the midpoint of the arc B(), not containing K, from the circumcircle of
ABKQ, then T1B = T1Q. Due to ZDPO = 90°, it suffices to show that ZOPT; = 90°
— indeed, T'=T) and TB = T'Q would follow.

Denote by Y the midpoint of B(). Then ZOXB = Z11Y B = 90°. The quadrilateral
QK BT is inscribed in a circle, hence /BT Q) = 180— /ZBK(Q) = ZAKB. Then ZXBO =
%.KAK B = %ZBTlQ = /BT Y and thus AOXB ~ ABY T, . The quadrilaterals PXBY
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and AXY P are paralellograms, since XY and PY are middle lines of the triangle AQB.

Consequently, OX OX XB PY

XP BY T,Y T
which along with /PXB = /ZPYB and ZOXB = /T\Y B gives ZOXP = ZPYT; and
AOXP ~ APYTy . Thus ZXPO = /YT P and ZPOX = LT PY.

In conclusion,

/OPT) = /XPY + /XPO+ £LYPIT|, = LPXA+ ZXPO+ £LXOP = 90°.
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G6. Let ABC be an acute triangle, and AX, AY two isogonal lines. Also, suppose
that K,S are the feet of perpendiculars from B to AX,AY, and T, L are the feet of
perpendiculars from C' to AX, AY respectively. Prove that KL and ST intersect on BC.

Solution. Denote ¢ = XAB = m, a =0AX = BAY. Then, because the quadrilat-
erals ABSK and ACTL are cyclic, we have

BSK + BAK = 180° = BSK + ¢ = LAC + LTC = LTC + ¢,

s0, due to the 90-degree angles formed, we have KSL = KTIL. Thus, KLST is cyclic.

Figure 6: G6

Consider M to be the midpoint of BC and K’ to be the symmetric point of K with
respect to M. Then, BKCK is a parallelogram, and so BK||CK’. But BK||CT, because

they are both perpendicular to AX. So, K’ lies on CT and, as KTK' = 90 and M is the
midpoint of KK', MK = MT. In a similar way, we have that MS = ML. Thus, the
center of (K LST) is M.

Consider D to be the foot of altitude from A to BC'. Then, D belongs in both (ABKS)
and (ACLT). So,

ADT + ACT = 180° = ABS + ADS = ADT + 90° — o = ADS + 90° — a,
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and AD is the bisector of SDT.

Because DM is perpendicular to AD, DM is the external bisector of this angle, and,
as MS = MT, it follows that DM ST is cyclic. In a similar way, we have that DM LK is
also cyclic.

So, we have that ST, KL and DM are the radical axes of these three circles, (K LST),
(DMST), (DMKL). These lines are, therefore, concurrent, and we have proved the
desired result. []

Alternative solution. We continue after proving that M is the center of (K LST). If D
is the foot of perpendicular from A to BC, then ASDKBEB is cyclic, as well as ATDLC.
The radical axes of those two circles and (K LST) are concurrent, thus KS and LT
intersect on point Q € AD. So, if P is the intersection point of KL and 7'S, due to

Brokard’s theorem, A(Q) is perpendicular to M P. This is, of course, equivalent to proving
that P belongs on BC. [J
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G7. Let AD, BE, and CF denote the altitudes of triangle AABC. Points E’ and F"' are
the reflections of E and F over AD, respectively. The lines BF' and CE’ intersect at X,
while the lines BE’ and C'F” intersect at the point Y. Prove that if H is the orthocenter
of AABC, then the lines AX,Y H, and BC are concurrent.

Solution. We will prove that the desired point of concurrency is the midpoint of BC.
Assume that AABC is acute. Let (ABC)® intersect (AEF) at the point Y'; we will prove
that ¥ = ¥,

Figure 7: G7

Using the fact that H is the incenter of ADFEF we get that D, E', F' and D, F', E are
triples of collinear points. Furthermore,

90° = LSAEH = /AF'H = /AE'H = /AFH = F',E' \H € (AEFY").
We will now prove that the points Y', B, D, F' are concyclic. Indeed,
LY'BD = LY'BC = £LY'AC = LY'AE = L.Y'F'E = (Y',B,D, F").

Now, as
LFY'B=/FDC=/EDC=/CAB = /CY'B,

the points C, F', Y’ are collinear. Similarly we get that B, E’, Y’ are collinear, which
implies
Y'=Y =(ABC) N (AEF).

°(XY Z) denotes the circumcircle of AXY Z
8/ denotes a directed angle modulo =
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Since we proved this property using directed angles, we know that it is also true for
obtuse triangles.

Notice that the points A, B, C, H form an orthocentric system; in other words H is
the orthocenter of AABC and A is the orthocenter AHBC. Furthermore, notice that
F'"is to AABC as E’' is to AHBC and that E’ is to AABC as F' is to AHBC. This
means that X is to AHBC as Y is to AABC' and, as we know the proven property is
also true for obtuse triangles, we get

X = (HBC)N (AEF).

By Reflecting the Orthocenter Lemma we know that in a triangle ABC, the reflection of
its orthocenter over the midpoint of BC' is the antipode of A w.r.t. (ABC). Applying
this Lemma on the triangles ABC and H BC we get that Y H and AX both go through
the midpoint of BC, thus finishing the solution. []

Remark 1: The crucial part of this solution is defining the points X, Y as intersections

of circles. This can also be achieved directly by using similar triangles or by using the
Spiral Similarity Lemma on AHBC,AHF'E' and AABC, AAE'F".

Remark 2: We can also invert around A with radius v AH - AD or around H with radius
vV HA - HD to prove that X or Y invert to the midpoint of BC' by using the existence of
the nine-point circle. [J
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G8. Given an acute triangle ABC, (c¢) is circumcircle with center O and H the orthocenter
of the triangle ABC. The line AO intersects (c) at the point D. Let Dy, Dy and Hy, H3
be the symmetrical points of the points D and H with respect to the lines AB, AC
respectively. Let (c;) be the circumcircle of the triangle AD,D,. Suppose that the line
AH intersects again (c¢;) at the point U, the line H,Hj3 intersects the segment D; D, at
the point K; and the line D Hj3 intersects the segment U Dy at the point L;. Prove that
one of the intersection points of the circumcircles of the triangles D, K1 H; and UD L, lies
on the line K;L;.

Solution. It is well known that the symmetrical points Hy, Hy, H3 of H with respect the
sides BC, AB, AC of the triangle ABC respectively lie on the circle (c).

U

Figure 8: G8

Let L be the second point of intersection of (¢) and (c;). First we will prove that the
lines D1 Hy, Dy Hs and U D pass through the point L.

Suppose that the line AH intersects the side BC' at the point Z. Since H,D||BC|| D1 D,
and B, C are the midpoints of the segments D, D, D, D respectively, we get that Z is the
midpoint of the segment H H,, so the point H lies on D;Dy. Therefore, AH 1 D,Dy and
AU is a diameter of (¢;). Thus, ALIUL and AL1 DL. We have that the points U, D, L
are collinear. (1)

Now, ZALDy, = £LAD;D,, LALHy = LACH,. Since AHCD, is cyclic we get
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LACHy = LADyD,. Therefore, ZALHy = ZALD;. So the points D;, H,, L are collinear.
(2)

Similarly,
ZDILDQ — éDlﬂDg — 18'Uﬂ - Z(ZADlH)

Since AD1BH is cyclic we have ZAD\H = ZABH = ZABHj;. Therefore, we get
ZD1LD,; =180° — 2(LABH3) = 180° — 2(LADH3) = 180° — LH,DHs.
Thus,
LD LDy 4+ ZH,DHs = 180° or £D\LDy, + £LH3sLH,; = 180°.

So the points Hj, L, D, are collinear. (3)

From (1), (2), (3) we have that the lines Dy Hy, DyH3 and UD are concurrent at the
point L.

Also we have

LH3DA = /4D;DA — ZCDH; = LAD;D — ZCBHj3
and because BHD,C' is a parallelogram, we get ZCBH3; = ZHD,C. So
ZHgDA - KADQD = KHDQC — ZADgﬂl — Z.AD]_DE — éAUDQ

Therefore, the circumcircle of the triangle U DL, passes through the point A. Also,
LAD\K, = /Dy DA = ZDyUA. But AUL, D is cyclic and we have ZD,UA = ZH3DA =
ZHEBA = ZHEHEA ThEI‘Ef{]FE, ZADlKl = AHEHQA ThUE, the circumcircle of the tri-
angle D, K, H, passes through the point A.

Because the points Hs, L, D, are collinear by the Desargues theorem, the lines U D,
L1 K,, DH, are concurrent, let say in the point M.

From the similarity of the triangles UDL; and D;K,H; we conclude that M is the
center of unique spiral similarity and because the circumcircles of the triangles D, Ky Hs

and U DL, intersect at the point A, then the second point of intersection is M. Therefore,
M lies on the line K7L,. [

Comment. We can prove the last part in a different way.

Let M be the point of intersection of the circumcircles of the triangles D, K;H,; and
UDL,. Now, we have

LK\MA=/H3H;A=/H3BA=/ZADH3 = LLLUA = ZLMA.

Therefore, the points L, K7, M are collinear. []
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G9. Given semicircle (¢) with diameter AB and center O. On the (c) we take point C
such that the tangent at the C intersects the line AB at the point E. The perpendicular
line from C' to AB intersects the diameter AB at the point D. On the (c) we get the points
H, Z such that CD = CH = CZ. The line HZ intersects the lines CO,CD, AB at the
points S, I, K respectively and the parallel line from I to the line AB intersects the lines
CO,CK at the points L, M respectively. We consider the circumcircle(k) of the triangle
LMD, which intersects again the lines AB, CK at the points P, U respectively. Let (e;),
(€2), (es) be the tangents of the (k) at the points L, M, P respectively and R = (e;) N (es),
X = (e2) N (ez), T = (e1) N (e3). Prove that if @ is the center of (k), the lines RD, TU,
X S pass through the same point, which lies in the line 7Q.

Solution. Since CH = CZ we have OC LHZ. So from the cyclic quadrilateral SODI
we get

CS-CO=CI-CD. (1)

Figure 9: G9

We draw the perpendicular line (v) to HC at the point H. Let J be the intersection
point of lines (v) and CO. Then CJ is diameter of the circle (O, OA) and

CJ =2C0. (2)
From the right triangle JHC we have
HC*=CS-CJ. (3)
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Therefore, from (1), (2) and (3) we get

Cs . %CJ —CI-CD or HC®=2CI-CD. (3)

However HC' = CD and thus CD = 2C'I. Thus, I is the midpoint of the segment
CD. Nevertheless, LM||OK, so the points L, M are the midpoints of the sides C'O and
C K respectively. Therefore, the circumcircle (k) of the triangle LM D is the Euler circle
of the COK and thus it passes through the point S.

We have )S = QU and from the right triangles OSK, OUK we get PS = PU = %.

Therefore, the points P, () are located on the perpendicular bisector of the segment
SU. Now, we conclude that SU||TX, because QP (e3). Similarly, we prove that DU || RT
and SD||RX.

Since the triangles SULD and XT R are homothetic we get that the lines RD, TU, XS
are concurrent at the center M of homothety.

The points I and () atre the incenters of homothetic triangles SUD and XTR, re-
spectively. Thus, the line I(Q) passes through the point M. [J
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NUMBER THEORY

TIN1. Let PP be the set of all prime numbers. Find all functions f : P — P such that

f(p)f("f} + P = f(q)f{ﬁ} + p?

holds for all p,q € P.

Solution. Obviously, the identical function f(p) = p for all p € P is a solution. We will
show that this is the only one.
First we will show that f(2) = 2. Taking ¢ = 2 and p any odd prime number, we have

F(p)® 427 = f(2)7P) 4 p?,

Assume that f(2) # 2. It follows that f(2) is odd and so f(p) = 2 for any odd prime

number p.
Taking any two different odd prime numbers p, ¢ we have

+¢=2"+p" = pi=¢ =p=gq,

contradiction. Hence, f(2) = 2.
So for any odd prime number p we have

f(p)ﬂ + 2P = 27(P) 4 52
Copy this relation as
2 — p* = 21P) — f(p)?. (1)
Let T be the set of all positive integers greater than 2, ie. T = {3,4,5,...}. The
function g : T' — Z, g(n) = 2™ — n?, is strictly increasing, i.e.

gn+1)—gn)=2"-2n—-1>0 (2)

for all n € T. We show this by induction. Indeed, for n = 3 it is true, 2° —2-3 -1 > 0.
Assume that 28 — 2k — 1 > 0. It follows that for n = k + 1 we have

2kl _9(k+1)—1=(2-2k-1)+(2-2) >0

for any k > 3. Therefore, (2) is true foralln € T'.
As consequence, (1) holds if and only if f(p) = p for all odd prime numbers p, as well
as for p = 2.

Therefore, the only function that satisfies the given relation is f(p) = p, for all p € P.
]
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TN2. Let S C {1,...,n} be a nonempty set, where n is a positive integer. We denote
by s the greatest common divisor of the elements of the set S. We assume that s # 1 and
let d be its smallest divisor greater than 1. Let 7' C {1,...,n} be a set such that S C T

and |T'| > 1+ E} Prove that the greatest common divisor of the elements in T is 1.

Solution. Let ¢ be the greatest common divisor of the elements in 7. Due to the fact
that S C T, we immediately get that ¢/s. Let us assume for the sake of contradiction
that ¢ # 1. From the previous observation we get that ¢t > d.

By taking into account that |T'| > 1+ E]’ we infer that we can find at least 1 + E]

elements in 7'. All of them will be divisible by ¢, and the largest of them, which we shall

denote by M, will be at least ¢ - (1 + [ED On the other hand, ¢ > d, hence

oo (4 () 20 (4 [5) 203 on

Therefore, M > n, which contradicts the fact that M € {1,...,n}.
In conclusion, t = 1, as desired. [J

TN2b.” Let n(n > 1) be a positive integer and U = {1,...,n}. Let S be a nonempty
subset of U and let d (d # 1) be the smallest common divisor of all elements of the set

S. Find the smallest positive integer k such that for any subset T of U, consisting of k
elements, with S C T', the greatest common divisor of all elements of T is equal to 1.

Solution. We will show that ki, = 1+ [3] (here [-| denotes the integer part).

Obviously, the number of elements of S is not grater than [E], ie. |S]| < [E], and

d d
S #U.
If § € T and the greatest common divisor of elements of T is equal to 1, then
T| > |S]+ 1.

1) Assume that |S| < [g] Let T be the subset of U, consisting of all multiples of d

in U. Thus, |T| = [g] and S C T'. Therefore, the greatest common divisor of all elements
of Tisd>1. Thus, k> 1+ [g]
2) Assume |S| = rﬂ Let T be any subset of U with S C T,S # T. Therefore,

IT| > 1+ [3—} Let ¢ be the greatest common divisor of all elements of T'. Assume that

g > 1. Therefore, q is a common divisor of all elements of S as well. Hence, ¢ > d. It

follows that |T'| < [E] < [3:}, contradiction. Hence, ¢ = 1.
q
n

Therefore, the minimal possible value of k is 1 + [E] O

"Proposed by PSC.
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COMBINATORICS

C1. 100 couples are invited to a traditional Moldovan dance. The 200 people stand in a
line, and then in a step, two of them (not necessarily adjacent) may swap positions. Find
the least C' such that whatever the initial order, they can arrive at an ordering where
everyone 1s dancing next to their partner in at most C steps.

Solution. With 100 replaced by N, the answer is C = C(N) = N — 1. Throughout, we
will say that the members of a couple have the same.

N=2: We use this as a base case for induction for both bounds. Up to labelling, there
is one trivial initial order, and two non-trivial ones, namely

1 1
1,1,2,2;  1,2,2,1;  1,2,1,2

The brackets indicate how to arrive at a suitable final ordering with one step. Obviously
one step i1s necessary in the second and third cases.

Upper bound: First we show C(IN) < N — 1, by induction. The base case N = 2
has already been seen. Now suppose the claim is true for N — 1, and consider an initial
arrangement of /N couples. Suppose the types of the left-most couples in line are a and b.
If a # b, then in the first step, swap the b in place two with the other person with type
a. If a = b, skip this. In both cases, we now have N — 1 couples distributed among the
final 2N — 2 places, and we know that N — 2 steps suffices to order them appropriately,
by induction. So IV — 1 steps suffices for N couples.

Lower bound: We need to exhibit an example of an initial order for which N — 1 steps
are necessary. Consider

Ay :=1,2.2,33,.... N—1,N—1,N,N,1. (1)

Proceed by induction, with the base case NV = 2 trivial. Suppose there is a sequence of at
most N — 2 steps which works. In any suitable final arrangement, a given type must be
in positions (odd,even), whereas they start in positions (even,odd). So each type must
be involved in at least one step. However, each step involves at most two types, so by the
pigeonhole principle, at least four types are involved in at most one step. Pick one such
type a # 1. The one step involving @ must be one of

W R T — cwgg i Oy B v

Neither of these steps affects the relative order of the 2N — 2 other people. So by ignoring
this step involving the a, we have a sequence of at most N — 3 steps acting on the other
2N — 2 people which appropriately sorts them. By induction, this is a contradiction. [J

Alternative lower bound I: Consider the graph with vertices given by pairs of
positions {(1,2),(3,4),...,(2N —1,2N)}. We add an edge between pairs of (different)
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vertices if we ever swap two people in places corresponding to those vertices. In particular,
at the end, the two people with type k£ end up in places corresponding to a single vertex.

Suppose we start from the ordering (1) and have some number of steps leading to an
ordering where everyone is next to their partner. Then, in the induced graph, there is a
path between the vertices corresponding to the places (2k — 3,2k — 2) and (2k — 1, 2k) for
each 2 < k < N, and also between (1,2) and (2N — 1,2N). In other words, the graph is
connected, and so must have at least N — 1 edges. [

Alternative lower bound II: Consider a bipartite multigraph with vertex classes
(v1,...,v,) and (wi,...,w,). Connect v; to w; if a person of type j is in positions
(22 — 1,27) (if both positions are taken by the type j couple, then add two edges).

Each step in the dance consists of replacing edges F = {v, < w,, vy < wy)} with
E' = {v, « wq,vy < w.}. However, both before and after the step, the number of
components in the graph which include {v,, vy, w., wq} is either one or two. The structure
of other components which do not include these vertices is unaffected by the move.

Therefore, the number of connected components increases by at most 1 in each step.

Starting from configuration (1), the graph initially consists of a single (cyclic) compo-
nent, so one requires at least n — 1 steps to get to the final configuration for which there
are n connected components. [
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C2. Suppose that the numbers {1,2,...,25} are written in some order in an 5 x 5 array.
Find the maximal positive integer k, such that the following holds. There is always an
2 X 2 subarray whose numbers have a sum not less than k.

C2b.® An 5 x 5 array must be completed with all numbers {1,2,...,25}, one number in
each cell. Find the maximal positive integer k, such that for any completion of the array
there is a 2 X 2 square (subarray), whose numbers have a sum not less than k.

Solution. We will prove that k..« = 45.

We number the columns and the rows and we select all possible 3% = 9 choices of an
odd column with an odd row.

Collecting all such pairs of an odd column with an odd row, we double count some
squares. Indeed, we take some 32 squares 5 times, some 12 squares 3 times and there are
some 4 squares (namely all the intersections of an even column with an even row) that
we don’t take in such pairs.

It follows that the maximal total sum over all 3% choices of an odd column with an

odd row is
5X (17+18+4---+25)+3x (b+6+---+16) = 1323.

So, by an averaging argument, there exists a pair of an odd column with an odd row
1323
= 147.

Then all the other squares of the array will have sum at least

(1+2+---+25) — 147 = 178.

with sum at most

But for these squares there is a tiling with 2 x 2 arrays, which are 4 in total. So there

' 178 :
is an 2 X 2 array, whose numbers have a sum at least T > 44, So, there is a 2 X 2 array

whose numbers have a sum at least 45. This argument gives that
kmax > 45. (1)

We are going now to give an example of an array, in which 45 is the best possible. We
fill the rows of the array as follows:

20| 95(24| 6 |23
11 14|12 3 | 13
22 |1 7T121 | 8 |20
14 |12 15| 1 |16
19 (9|18 | 10 | 17

We are going now to even rows:
In the above array, every 2 x 2 subarray has a sum, which is less or equal to 45. This
gives that

By 205 (2)
A combination of (1) and (2) gives that kya.x = 45. O

8Proposed by PSC.
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C3. Anna and Bob play a game on the set of all points of the form (m,n) where m,n
are integers with |m|, [n| < 2019. Let us call the lines z = £2019 and y = +2019 the
boundary lines of the game. The points of these lines are called the boundary points. The
neighbours of point (m,n) are the points (m + 1,n), (m — 1,n), (m,n + 1), (m,n — 1).

Anna starts with a token at the origin (0,0). With Bob playing first, they alternately
perform the following steps: At his turn, Bob deletes two points on each boundary line.
On her turn Anna makes a sequences of three moves of the token, where a move of the
token consists of picking up the token from its current position and placing it in one of
its neighbours.

To win the game Anna must place her token on a boundary point before it is deleted
by Bob. Does Anna have a winning strategy?

[Note: At every turn except perhaps her last, Anna must make exactly three moves.]

Solution. Anna does not have a winning strategy. We will provide a winning strategy
for Bob. It is enough to describe his strategy for the deletions on the line y = 2019.

Bob starts by deleting (0,2019) and (—1,2019). Once Anna completes her step, he
deletes the next two available points on the left if Anna decreased her z-coordinate, the
next two available points on the right if Anna increased her z-coordinate, and the next
available point to the left and the next available point to the right if Anna did not change
her z-coordinate. The only exception to the above rule is on the very first time Anna
decreases x by exactly 1. In that step, Bob deletes the next available point to the left
and the next available point to the right.

Bob’'s strategy guarantees the following: If Anna makes a sequence of steps reaching
(—z,y) with z > 0 and the exact opposite sequence of moves in the horizontal direction
reaching (z,y) then Bob deletes at least as many points to the left of (0,2019) in the first
sequence than points to the right of (0,2019) in the second sequence.

So we may assume for contradiction that Anna wins by placing her token at (k, 2019)
for some k > 0.

Define A = 3m — (2z¢ + y) where m is the total number of points deleted by Bob to
the right of (0,2019), and (z,y) is the position of Anna’s token.

For each sequence of steps performed first by Anna and then by Bob, A does not
decrease. This can be seen by looking at the following table exhibiting the changes in 3m
and 2z + y. We have excluded the cases where 2z + y < 0.

Step 1 (0,3) | (1.2) | (-1,2) | (21 [(0,1)(3,0)](1,0) ] 2-1) | (1,-2)
m 1 | 2 |0(rl)| 2 | 1 | 2 | 2 2 2
3m 3 6 |0(r3)| 6 3 6 6 6 6

2z + 9y 3 4 0 5] 1 ) 2 3 0

The table also shows that if in this sequence of steps Anna changes y by +1 or —2
then A is increased by 1. Also, if Anna changes y by +2 or —1 then the first time this

happens A is increased by 2. (This also holds if her move is (0,—1) or (—2,—1) which
are not shown in the table.)
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Since Anna wins by placing her token at (k,2019) we must have m < k — 1 and
k < 2018. So at that exact moment we have:

A = 3m — (2k + 2019) = k — 2022 < —4.

So in her last turn she must have decreased A by at least 4. So her last step must have
been (1,2) or (2,1) which give a decrease of 4 and 5 respectively. (It could not be (3,0)
because then she must have already won. Also she could not have done just one or two
moves in her last turn since this is not enough for the required decrease in A.)

If her last step was (1,2) then just before doing it we had y = 2017 and A = 0. This
means that in one of her steps the total change in ¥ was not 0 mod 3. However in that
case we have seen that A > 0, a contradiction.

If her last step was (2,1) then just before doing it we had y = 2018 and A = 0 or
A = 1. So she must have made at least two steps with the change of y being +1 or —2
or at least one step with the change of y being +2 or —1. In both cases, consulting the
table, we get an increase of at least 2 in A, a contradiction.

Note 1: If Anna is allowed to make at most three moves at each step, then she
actually has a winning strategy.

Note 2: If 2019 is replaced by N > 1 then Bob has a winning strategy if and only if
3|N. O



BMO 2019 Combinatorics. Solutions 37

C4. A town-planner has built an isolated city whose road network consists of 2N round-
abouts, each connecting exactly three roads. A series of tunnels and bridges ensure that all
roads in the town meet only at roundabouts. All roads are two-way, and each roundabout
is oriented clockwise.

Vlad has recently passed his driving test, and is nervous about roundabouts. He starts
driving from his house, and always takes the first exit at each roundabout he encounters.
It turns out his journey includes every road in the town in both directions before he arrives
back at the starting point in the starting direction. For what values of NN is this possible?

Solution. N odd. In fact, the number of trajectories has the same parity as V.

The setting is a (multi)graph where every vertex has degree three. Each vertex has an
orientation, an ordering of its incident edges. We call Vlad’s possible paths trajectories,
and a complete trajectory if he traverses every edge in both directions. We may assume
the multigraph is connected, as otherwise a complete trajectory is certainly not possible.

N odd (construction): There is an example when N = 1, as shown in Figure 10.

Figure 10: C4: N =1

There are two 3-regular graphs on two vertices, the handcuffs and theta. The handcuffs
fail since each self-loop has its own trajectory, but the theta does work for two of the four
possible orientations.

We now construct examples for N > 3 odd by induction. Suppose we have a valid
3-regular graph on 2(NN — 2) vertices, such that Vlad’s trajectory is complete. This has
at least two (undirected) edges, so pick two of them, e and €'. (It does not matter if they
share incident vertices.) Split both e and €’ into three, by adding two new vertices to
each, and connect as in Figure 11.

New vertices have degree three; other degrees are unchanged, so the graph is still 3-
regular. For each edge e and €', pick a direction. (Both up in the figure.) These directed
edges are part of the complete trajectory given by the induction hypothesis. Choose the
orientations of the new vertices to preserve these two sections of the trajectory. The
remaining two directed edges in the original graph will end up as partial trajectories in
the new graph (see Figure 11).

However, because all the new partial trajectories start and finish at the same places
and in the same directions in the original graph, and no other directed edges are changed,
the trajectory remains complete. The result for N odd follows by induction.

N even: Split each edge e in the graph into two directed edges ‘¢ and €. Let D
be the set of the 6N directed edges. Let o be the permutation of D which exchanges ‘e
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Figure 11: C4: Trajectories in the old and new graphs

—
and €.

Now, for each roundabout v, let €1, €5, €5 be the three directed edges into v. The
roundabout has a cyclic orientation, either (€, €5, €3) or (&;, €3, €2). Let #(€;) describe
the directed edge after &; in this orientation. By considering all roundabouts, 8 is also a
permutation of D.

Note that 8(&;) is directed towards v, so the directed edge after &; in a trajectory is
a(f8(e1)). So Vlad makes a complete trajectory precisely if af is a cyclic permutation of
D. Note that the cycle type of 8 is (3,3,...,3), and the cycle type of a is (2,2,...,2).
So 6 is always an even permutation, while « is an even permutation precisely when N is
even.

However, a cyclic permutation of D is always odd, since |D| = 6N is even. So there
is certainly no complete trajectory when N is even. []

Alternative I: We claim that in a graph with E edges, and V vertices, the number
of trajectories, 7', has the same parity as V + E. We allow degenerate cases of this
statement, for example graphs that are disconnected, or trajectories that consist of only
a single vertex, so that the graph that consists of V vertices and no edges has precisely
V trajectories, and thus satisfies the given claim. This shows that N cannot be even.

We prove the claim by induction on K. Suppose we are given a graph with £ > 1
edges and T trajectories. Then consider any edge e, and its two directions €, ‘e. Let A
be the sequence of directed edges starting from the one after € in its trajectory, ending
at the edge before ‘e or €, whichever appears first. Similarly define B starting after ‘e .
A and B are disjoint, and may be empty.

Ao {1‘_, = _ﬁ_ = A ﬂrf"r“n (
e o
‘_,..E r o B ‘,K
Bord —
Figure 12: C4: (a) Initial trajectories. (b) After removing e

We consider removing e, but otherwise keep the orientations at its incident vertices
the same. Then if ¢, e are in different trajectories, these are the concatenations (€, A)
and (‘e , B). After removing e, for each direction ‘e, €, instead of proceeding onto this
directed edge, the relevant trajectory moves to the other trajectory. In other words, the
resulting trajectory is the concatenation (A, B). So T decreases by one.
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Similarly, if both directions of e are part of the same trajectory, this is the concatena-
tion (€', A, e, B). Then when we remove e, this splits into the two trajectories (A) and
(B), by an essentially identical argument. So 7' increases by one. Thus in both cases,
removing one edge changes the parity of 7', and so the claim follows by induction on E.

In the original setting we have V = 2N, E = 3N, so T' must have the same parity as
SN. Thus 7' = 1 is impossible when N is even. [l

Alternative II: An alternative is to induct on N, using the following stronger claim.

Claim: You can’t have exactly one trajectory for /V even; nor exactly two trajectories
for a connected graph with /N odd.

Proof of claim: We have to check that the claim is true for N = 1,2. Checking N = 2
requires a couple of case. Alternatively, one can argue that a single cyclic edge with no
vertices (!) counts as the case N = 0. Now use strong induction by contradiction. If N
is even, but has exactly one trajectory, then there are no self-loops, so pick any edge e,
connecting vertices v # w. Remove e, then remove v, and connect v’s other two incident
edges (which are distinct from each other and e) to form a single edge. Do the same for w.

Figure 13: C4: Trajectories in the old and new graphs

The effect on the trajectories is shown in Figure 13. Note that the new graph is still
3-regular. We then argue as in Proof I that this operation splits the trajectory into two.
So if the new graph is connected, this contradicts the hypothesis for N — 1. Alternately,
the new graph might consist of two components. Since it is 3-regular, each component
has an even number of vertices. The total number of vertices is 2(N — 1), which is 2
modulo 4, and so one of the components has a number of vertices which is a multiple of
four, and a complete trajectory of this component, which also contradicts the induction
hypothesis.

Now suppose N is odd, but the original oriented graph has exactly two trajectories.
If there is a self-loop at some vertex v, then one of the trajectories involves only this
self-loop. So remove this vertex, and consider the other vertex w connected to v. Remove
w and join up its other two incident edges. The resulting graph corresponds to N even,
and has a complete trajectory, which is a contradiction.

Otherwise, there are no self-loops, but the graph is connected hence there must be
one edge e connecting vertices v # w which has one trajectory in one direction, and the
other trajectory in the other direction. Collapse this edge as in Figure 13, and again
by the same argument as in Proof I, this merges the two trajectories, giving a complete
trajectory for NV even, and a contradiction. []



