
The 10th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. Let ABCD be a cyclic quadrangle and let P be a point on the side AB. The
diagonal AC crosses the segment DP at Q. The parallel through P to CD crosses the extension
of the side BC beyond B at K, and the parallel through Q to BD crosses the extension of the side
BC beyond B at L. Prove that the circumcircles of the triangles BKP and CLQ are tangent.

Aleksandr Kuznetsov, Russia

Solution. We show that the circles BKP and CLQ are tangent at the point T where the line
DP crosses the circle ABCD again.

Since BCDT is cyclic, we have ∠KBT = ∠CDT . Since KP ‖ CD, we get ∠CDT = ∠KPT .
Thus, ∠KBT = ∠CDT = ∠KPT , which shows that T lies on the circle BKP . Similarly, the
equalities ∠LCT = ∠BDT = ∠LQT show that T also lies on the circle CLQ.

It remains to prove that these circles are indeed tangent at T . This follows from the fact that
the chords TP and TQ in the circles BKTP and CLTQ, respectively, both lie along the same
line and subtend equal angles ∠TBP = ∠TBA = ∠TCA = ∠TCQ.
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Remarks. The point T may alternatively be defined as the Miquel point of (any four of) the
five lines AB, BC, AC, KP , and LQ.

Of course, the result still holds if P is chosen on the line AB, and the other points lie on the
corresponding lines rather than segments/rays. The current formulation was chosen in order to
avoid case distinction based on the possible configurations of points.
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Problem 2. Determine whether there exist non-constant polynomials P (x) and Q(x) with real
coefficients satisfying

P (x)10 + P (x)9 = Q(x)21 +Q(x)20. (∗)

Ilya Bogdanov, Russia

Solution 1. The answer is in the negative. Comparing the degrees of both sides in (∗) we get
degP = 21n and degQ = 10n for some positive integer n. Take the derivative of (∗) to obtain

P ′P 8(10P + 9) = Q′Q19(21Q+ 20). (∗∗)

Since gcd(10P + 9, P ) = gcd(10P + 9, P + 1) = 1, it follows that gcd(10P + 9, P 9(P + 1)) = 1, so
gcd(10P + 9, Q) = 1, by (∗). Thus (∗∗) yields 10P + 9 | Q′(21Q+ 20), which is impossible since
0 < deg(Q′(21Q+ 20)) = 20n− 1 < 21n = deg(10P + 9). A contradiction.

Remark. A similar argument shows that there are no non-constant solutions of Pm + Pm−1 =
Qk + Qk−1, where k and m are positive integers with k ≥ 2m. A critical case is k = 2m; but
in this case there exist more routine ways of solving the problem. Thus, we decided to choose
k = 2m+ 1.

Solution 2. Letting r and s be integers such that r ≥ 2 and s ≥ 2r, we show that if P r +P r−1 =
Qs +Qs−1, then Q is constant.

Let m = degP and n = degQ. A degree inspection in the given relation shows that m ≥ 2n.
We will prove that P (P + 1) has at least m + 1 distinct complex roots. Assuming this for

the moment, notice that Q takes on one of the values 0 or −1 at each of those roots. Since
m + 1 ≥ 2n + 1, it follows that Q takes on one of the values 0 and −1 at more than n distinct
points, so Q must be constant.

Finally, we prove that P (P + 1) has at least m+ 1 distinct complex roots. This can be done
either by referring to the Mason–Stothers theorem or directly, in terms of multiplicities of the
roots in question.

Since P and P +1 are relatively prime, the Mason–Stothers theorem implies that the number
of distinct roots of P (P + 1) is greater than m, hence at least m+ 1.

For a direct proof, let z1, . . ., zt be the distinct complex roots of P (P + 1), and let zk have
multiplicity αk, k = 1, . . . , t. Since P and P + 1 have no roots in common, and P ′ = (P + 1)′,
it follows that P ′ has a root of multiplicity αk − 1 at zk. Consequently, m − 1 = degP ′ ≥∑t

k=1(αk − 1) =
∑t

k=1 αk − t = 2m− t ; that is, t ≥ m+ 1. This completes the prof.

Remark. The Mason–Stothers theorem (in a particular case over the complex field) claims
that, given coprime complex polynomials P (x), Q(x), and R(x), not all constant, such that
P (x) + Q(x) = R(x), the total number of their complex roots (not regarding multiplicities) is
at least max{degP,degQ,degR} + 1. This theorem was a part of motivation for the famous
abc-conjecture.
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Problem 3. Ann and Bob play a game on an infinite checkered plane making moves in turn;
Ann makes the first move. A move consists in orienting any unit grid-segment that has not been
oriented before. If at some stage some oriented segments form an oriented cycle, Bob wins. Does
Bob have a strategy that guarantees him to win?

Maxim Didin, Russia

Solution. The answer is in the negative: Ann has a strategy allowing her to prevent Bob’s
victory.

We say that two unit grid-segments form a low-left corner (or LL-corner) if they share an
endpoint which is the lowest point of one and the leftmost point of the other. An up-right corner
(or UR-corner) is defined similarly. The common endpoint of two unit grid-segments at a corner
is the joint of that corner.

Fix a vertical line on the grid and call it the midline; the unit grid-segments along the
midline are called middle segments. The unit grid-segments lying to the left/right of the midline
are called left/right segments. Partition all left segments into LL-corners, and all right segments
into UR-corners.

We now describe Ann’s strategy. Her first move consists in orienting some middle segment
arbitrarily. Assume that at some stage, Bob orients some segment s. If s is a middle segment,
Ann orients any free middle segment arbitrarily. Otherwise, s forms a corner in the partition
with some other segment t. Then Ann orients t so that the joint of the corner is either the source
of both arrows, or the target of both. Notice that after any move of Ann’s, each corner in the
partition is either completely oriented or completely not oriented. This means that Ann can
always make a required move.

Assume that Bob wins at some stage, i.e., an oriented cycle C occurs. Let X be the lowest
of the leftmost points of C, and let Y be the topmost of the rightmost points of C. If X lies
(strictly) to the left of the midline, then X is the joint of some corner whose segments are both
oriented. But, according to Ann’s strategy, they are oriented so that they cannot occur in a
cycle — a contradiction. Otherwise, Y lies to the right of the midline, and a similar argument
applies. Thus, Bob will never win, as desired.

Remarks. (1) There are several variations of the argument in the solution above. For instance,
instead of the midline, Ann may choose any infinite in both directions down going polyline along
the grid (i.e., consisting of steps to the right and steps-down alone). Alternatively, she may split
the plane into four quadrants, use their borders as “trash bin” (as the midline was used in the
solution above), partition all segments in the upper-right quadrant into UR-corners, all segments
in the lower-right quadrant into LR-corners, and so on.

(2) The problem becomes easier if Bob makes the first move. In this case, his opponent just
partitions the whole grid into LL-corners. In particular, one may change the problem to say that
the first player to achieve an oriented cycle wins (in this case, the result is a draw).

On the other hand, this version is closer to known problems. In particular, the following
problem is known:

Ann and Bob play the game on an infinite checkered plane making moves in turn
(Ann makes the first move). A move consists in painting any unit grid segment that
has not been painted before (Ann paints in blue, Bob paints in red). If a player creates
a cycle of her/his color, (s)he wins. Does any of the players have a winning strategy?

Again, the solution is pairing strategy with corners of a fixed orientation (with a little twist
for Ann’s strategy — in this problem, it is clear that Ann has better chances).
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The 10th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Let a, b, c, d be positive integers such that ad 6= bc and gcd(a, b, c, d) = 1. Prove
that, as n runs through the positive integers, the values gcd(an+ b, cn+d) may achieve form the
set of all positive divisors of some integer.

Raul Alcantara, Peru

Solution 1. We extend the problem statement by allowing a and c take non-negative integer
values, and allowing b and d to take arbitrary integer values. (As usual, the greatest common
divisor of two integers is non-negative.) Without loss of generality, we assume 0 ≤ a ≤ c. Let
S(a, b, c, d) = {gcd (an+ b, cn+ d) : n ∈ Z>0}.

Now we induct on a. We first deal with the inductive step, leaving the base case a = 0 to
the end of the solution. So, assume that a > 0; we intend to find a 4-tuple (a′, b′, c′, d′) satisfying
the requirements of the extended problem, such that S(a′, b′, c′, d′) = S(a, b, c, d) and 0 ≤ a′ < a,
which will allow us to apply the induction hypothesis.

The construction of this 4-tuple is provided by the step of the Euclidean algorithm. Write
c = aq + r, where q and r are both integers and 0 ≤ r < a. Then for every n we have

gcd(an+ b, cn+ d) = gcd
(
an+ b, q(an+ b) + rn+ d− qb

)
= gcd

(
an+ b, rn+ (d− qb)

)
,

so a natural intention is to define a′ = r, b′ = d− qb, c′ = a, and d′ = b (which are already shown
to satisfy S(a′, b′, c′, d′) = S(a, b, c, d)). The check of the problem requirements is straightforward:
indeed,

a′d′ − b′c′ = (c− qa)b− (d− qb)a = −(ad− bc) 6= 0

and
gcd(a′, b′, c′, d′) = gcd(c− qa, b− qd, a, b) = gcd(c, d, a, b) = 1.

Thus the step is verified.

It remains to deal with the base case a = 0, i.e., to examine the set S(0, b, c, d) with bc 6= 0 and
gcd(b, c, d) = 1. Let b′ be the integer obtained from b by ignoring all primes b and c share (none
of them divides cn + d for any integer n, otherwise gcd(b, c, d) > 1). We thus get gcd(b′, c) = 1
and S(0, b′, c, d) = S(0, b, c, d).

Finally, it is easily seen that S(0, b′, c, d) is the set of all positive divisors of b′. Each member
of S(0, b′, c, d) is clearly a divisor of b′. Conversely, if δ is a positive divisor of b′, then cn+ d ≡ δ
(mod b′) for some n, since b′ and c are coprime, so δ is indeed a member of S(0, b′, c, d).

Solution 2. (Alexander Betts) For positive integers s and t and prime p, we will denote by
gcdp(s, t) the greatest common p-power divisor of s and t.

Claim 1. For any positive integer n, gcd(an+ b, cn+ d) | ad− bc.
Proof. This is clear from the identity

a(cn+ d)− c(an+ b) = ad− bc. (†)

Claim 2. The set of values taken by gcd(an+ b, cn+ d) is exactly the set of values taken by the
product ∏

p|ad−bc

gcdp(anp + b, cnp + d)

as the (np)p|ad−bc each range over positive integers.
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Proof. From the identity

gcd(an+ b, cn+ d) =
∏

p|ad−bc

gcdp(an+ b, cn+ d),

it is clear that every value taken by gcd(an+ b, cn+d) is also a value taken by the product (with
all np = n). Conversely, it suffices to show that, given any positive integers (np)p|ad−bc, there is
a positive integer n such that gcdp(an+ b, cn+ d) = gcdp(anp + b, cnp + d) for each p | ad− bc.
This can be achieved by requiring that n be congruent to np modulo a sufficiently large1 power
of p (using the Chinese Remainder Theorem).

Using Claim 2, it suffices to determine the sets of values taken by gcdp(an + b, cn + d) as n
ranges over all positive integers. There are two cases.

Claim 3. If p | a, c, then gcdp(an+ b, cn+ d) = 1 for all n.

Proof. If p | an+ b, cn+ d, then we would have p | a, b, c, d, which is not the case.

Claim 4. If p - a or p - c, then the values taken by gcdp(an+ b, cn+ d) are exactly the p-power
divisors of ad− bc.
Proof. Assume without loss of generality that p - a. Then from identity (†) we have gcdp(an+
b, cn + d) = gcdp(an + b, ad − bc). But since p - a, the arithmetic progression an + b takes all
possible values modulo the highest p-power divisor of ad− bc, and in particular the values taken
by gcdp(an+ b, ad− bc) are exactly the p-power divisors of ad− bc.

Conclusion. Using claims 2, 3 and 4, we see that the set of values taken by gcd(an+b, cn+d) is
equal to the set of products of p-power divisors of ad− bc, where we only consider those primes p
not dividing gcd(a, c). Thus the set of values of gcd(an+ b, cn+ d) is equal to the set of divisors
of the largest factor of ad− bc coprime to gcd(a, c).

Remarks. (1) If S(a, b, c, d) is the set of all positive divisors of some integer, then necessarily
ad 6= bc and gcd (a, b, c, d) = 1: finiteness of S(a, b, c, d) forces the former, and membership of 1
forces the latter.

(2) One may modify the problem statement according to the first paragraph of the solution.
However, it seems that in this case one needs to include a clarification of the agreement on gcd
being necessarily non-negative.

1For example, n ≡ np modulo the largest p-power divisor of ad− bc.
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Problem 5. Let n be a positive integer and fix 2n distinct points on a circumference. Split these
points into n pairs and join the points in each pair by an arrow (i.e., an oriented line segment).

The resulting configuration is good if no two arrows cross, and there are no arrows
−−→
AB and

−−→
CD

such that ABCD is a convex quadrangle oriented clockwise. Determine the number of good
configurations.

Fedor Petrov, Russia

Solution 1. The required number is
(
2n
n

)
. To prove this, trace the circumference counterclockwise

to label the points a1, a2, . . ., a2n.
Let C be any good configuration and let O(C) be the set of all points from which arrows

emerge. We claim that every n-element subset S of {a1, . . . , a2n} is an O-image of a unique good
configuration; clearly, this provides the answer.

To prove the claim induct on n. The base case n = 1 is clear. For the induction step,
consider any n-element subset S of {a1, . . . , a2n}, and assume that S = O(C) for some good
configuration C. Take any index k such that ak ∈ S and ak+1 /∈ S (assume throughout that
indices are cyclic modulo 2n, i.e., a2n+1 = a1 etc.).

If the arrow from ak points to some a`, k+ 1 < ` (< 2n+k), then the arrow pointing to ak+1

emerges from some am, m in the range k + 2 through `− 1, since these two arrows do not cross.
Then the arrows ak → a` and am → ak+1 form a prohibited quadrangle. Hence, C contains an
arrow ak → ak+1.

On the other hand, if any configuration C contains the arrow ak → ak+1, then this arrow
cannot cross other arrows, neither can it occur in prohibited quadrangles.

Thus, removing the points ak, ak+1 from {a1, . . . , a2n} and the point ak from S, we may apply
the induction hypothesis to find a unique good configuration C′ on 2n−2 points compatible with
the new set of sources (i.e., points from which arrows emerge). Adjunction of the arrow ak → ak+1

to C′ yields a unique good configuration on 2n points, as required.

Solution 2. Use the counterclockwise labelling a1, a2, . . . , a2n in the solution above.
Letting Dn be the number of good configurations on 2n points, we establish a recurrence

relation for the Dn. To this end, let Cn = (2n)!
n!(n+1)! the nth Catalan number; it is well-known that

Cn is the number of ways to connect 2n given points on the circumference by n pairwise disjoint
chords.

Since no two arrows cross, in any good configuration the vertex a1 is connected to some a2k.
Fix k in the range 1 through n and count the number of good configurations containing the arrow
a1 → a2k. Let C be any such configuration.

In C, the vertices a2, . . . , a2k−1 are paired off with one other, each arrow pointing from the
smaller to the larger index, for otherwise it would form a prohibited quadrangle with a1 → a2k.
Consequently, there are Ck−1 ways of drawing such arrows between a2, . . . , a2k−1.

On the other hand, the arrows between a2k+1, . . . , a2n also form a good configuration, which
can be chosen in Dn−k ways. Finally, it is easily seen that any configuration of the first kind and
any configuration of the second kind combine together to yield an overall good configuration.

Thus the number of good configurations containing the arrow a1 → a2k is Ck−1Dn−k. Clearly,
this is also the number of good configurations containing the arrow a2(n−k+1) → a1, so

Dn = 2
n∑

k=1

Ck−1Dn−k. (∗)

To find an explicit formula for Dn, let d(x) =
∑∞

n=0Dnx
n and let c(x) =

∑∞
n=0Cnx

n =
1−
√
1−4x
2x be the generating functions of the Dn and the Cn, respectively. Since D0 = 1, relation (∗)
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yields d(x) = 2xc(x)d(x) + 1, so

d(x) =
1

1− 2xc(x)
= (1− 4x)−1/2 =

∑
n≥0

(
−1

2

)(
−3

2

)
. . .

(
−2n− 1

2

)
(−4x)n

n!

=
∑
n≥0

2n(2n− 1)!!

n!
xn =

∑
n≥0

(
2n

n

)
xn.

Consequently, Dn =
(
2n
n

)
.

Solution 3. Let Cn = 1
n+1

(
2n
n

)
denote the nth Catalan number and recall that there are exactly

Cn ways to join 2n distinct points on a circumference by n pairwise disjoint chords. Such a
configuration of chords will be referred to as a Catalan n-configuration. An orientation of the
chords in a Catalan configuration C making it into a good configuration (in the sense defined in
the statement of the problem) will be referred to as a good orientation for C.

We show by induction on n that there are exactly n + 1 good orientations for any Catalan
n-configuration, so there are exactly (n + 1)Cn =

(
2n
n

)
good configurations on 2n points. The

base case n = 1 is clear.
For the induction step, let n > 1, let C be a Catalan n-configuration, and let ab be a chord of

minimal length in C. By minimality, the endpoints of the other chords in C all lie on the major
arc ab of the circumference.

Label the 2n endpoints 1, 2, . . ., 2n counterclockwise so that {a, b} = {1, 2}, and notice that
the good orientations for C fall into two disjoint classes: Those containing the arrow 1→ 2, and
those containing the opposite arrow.

Since the arrow 1→ 2 cannot be involved in a prohibited quadrangle, the induction hypothesis
applies to the Catalan (n − 1)-configuration formed by the other chords to show that the first
class contains exactly n good orientations.

Finally, the second class consists of a single orientation, namely, 2 → 1, every other arrow
emerging from the smaller endpoint of the respective chord; a routine verification shows that this
is indeed a good orientation. This completes the induction step and ends the proof.

Remark. Combining the arguments from Solutions 1 and 3 one gets a way (though not the
easiest) to compute the Catalan number Cn.

Solution 4, sketch. (Sang-il Oum) As in the previous solution, we intend to count the number
of good orientations of a Catalan n-configuration.

For each such configuration, we consider its dual graph T whose vertices are finite regions
bounded by chords and the circle, and an edge connects two regions sharing a boundary segment.
This graph T is a plane tree with n edges and n+ 1 vertices.

There is a canonical bijection between orientations of chords and orientations of edges of T
in such a way that each chord crosses an edge of T from the right to the left of the arrow on that
edge. A good orientation of chords corresponds to an orientation of the tree containing no two
edges oriented towards each other. Such an orientation is defined uniquely by its source vertex,
i.e., the unique vertex having no in-arrows.

Therefore, for each tree T on n+ 1 vertices, there are exactly n+ 1 ways to orient it so that
the source vertex is unique — one for each choice of the source. Thus, the answer is obtained in
the same way as above.
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Problem 6. Fix a circle Γ, a line ` tangent to Γ, and another circle Ω disjoint from ` such that Γ
and Ω lie on opposite sides of `. The tangents to Γ from a variable point X on Ω cross ` at Y
and Z. Prove that, as X traces Ω, the circle XY Z is tangent to two fixed circles.

Russia, Ivan Frolov

Solution. Assume Γ of unit radius and invert with respect to Γ. No reference will be made to
the original configuration, so images will be denoted by the same letters. Letting Γ be centred
at G, notice that inversion in Γ maps tangents to Γ to circles of unit diameter through G (hence
internally tangent to Γ). Under inversion, the statement reads as follows:

Fix a circle Γ of unit radius centred at G, a circle ` of unit diameter through G, and
a circle Ω inside ` disjoint from `. The circles η and ζ of unit diameter, through G
and a variable point X on Ω, cross ` again at Y and Z, respectively. Prove that, as
X traces Ω, the circle XY Z is tangent to two fixed circles.

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

RN

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Γ

`

Ω

η

ζ

ξ

Since η and ζ are the reflections of the circumcircle ` of the triangle GY Z in its sidelines
GY and GZ, respectively, they pass through the orthocentre of this triangle. And since η and ζ
cross again at X, the latter is the orthocentre of the triangle GY Z. Hence the circle ξ through
X, Y , Z is the reflection of ` in the line Y Z; in particular, ξ is also of unit diameter.

Let O and L be the centres of Ω and `, respectively, and let R be the (variable) centre of ξ. Let
GX cross ξ again at X ′; then G and X ′ are reflections of one another in the line Y Z, so GLRX ′

is an isosceles trapezoid. Then LR ‖ GX and ∠(LG,GX) = ∠(GX ′, X ′R) = ∠(RX,XG), i.e.,

LG ‖ RX; this means that GLRX is a parallelogram, so
−−→
XR =

−→
GL is constant.

Finally, consider the fixed point N defined by
−−→
ON =

−→
GL. Then XRNO is a parallelogram,

so the distance RN = OX is constant. Consequently, ξ is tangent to the fixed circles centred
at N of radii |1/2−OX| and 1/2 +OX.

One last check is needed to show that the inverse images of the two obtained circles are
indeed circles and not lines. This might happen if one of them contained G; we show that this is
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impossible. Indeed, since Ω lies inside `, we have OL < 1/2−OX, so

NG =
∣∣−→GL+

−→
LO +

−−→
ON

∣∣ =
∣∣2−→GL+

−→
LO
∣∣ ≥ 2

∣∣−→GL∣∣− ∣∣−→LO∣∣ > 1− (1/2−OX) = 1/2 +OX;

this shows that G is necessarily outside the obtained circles.

Remarks. (1) The last check could be omitted, if we allowed in the problem statement to regard
a line as a particular case of a circle. On the other hand, the Problem Selection Committee
suggests not to punish students who have not performed this check.

(2) Notice that the required fixed circles are also tangent to Ω.
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