
The 3rd Olympiad of Metropolises

Day 1. Solutions

Problem 1. Solve the system of equations in real numbers:{
(x− 1)(y − 1)(z − 1) = xyz − 1 ,

(x− 2)(y − 2)(z − 2) = xyz − 2 .

(Vladimir Bragin)

Answer: x = 1, y = 1, z = 1.

Solution 1. By expanding the parentheses and reducing common terms we obtain{
− (xy + yz + zx) + (x+ y + z) = 0 ,

− 2(xy + yz + zx) + 4(x+ y + z) = 6 .

From the first equation we can conclude that xy+yz+zx = x+y+z. By substituting
this into the second equation, we obtain that x+ y + z = 3. We now have to solve
the system {

x+ y + z = 3 ,

xy + yz + zx = 3 .
(1)

If we square the first equation, we get x2 + y2 + z2 + 2(xy + yz + zx) = 9. Hence
x2 + y2 + z2 = 3 = xy + yz + zx.

We will prove that if x2 + y2 + z2 = xy + yz + zx, than x = y = z:

x2 + y2 + z2 = xy + yz + zx ⇐⇒
2x2 + 2y2 + 2z2 = 2xy + 2yz + 2zx ⇐⇒

x2 − 2xy + y2 + x2 − 2xz + z2 + y2 − 2yz + z2 = 0 ⇐⇒
(x− y)2 + (x− z)2 + (y − z)2 = 0 .

The sum of three squares is 0, so all of them are zeroes, which implies x = y = z.
That means x = y = z = 1.

Solution 1’. We will show one more way to solve the system (1). Express z = 3−x−y
from first equation and substitute it into the second one:

xy + (y + x)(3− x− y) = 3 ⇐⇒
xy + 3x+ 3y − 2xy − x2 − y2 = 3 ⇐⇒
x2 + y2 + xy − 3x− 3y + 3 = 0 ⇐⇒
x2 + x(y − 3) + y2 − 3y + 3 = 0 .
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Let us solve it as a quadratic equation over variable x:

x =
(3− y)±

√
(y − 3)2 − 4(y2 − 3y + 3)

2
=

=
(3− y)±

√
y2 − 6y + 9− 4y2 + 12y − 12

2
=

=
(3− y)±

√
−3y2 + 6y − 3

2
=

=
(3− y)±

√
−3(y − 1)2

2
.

We can conclude that y = 1, because otherwise the square root wouldn’t exist. It
follows that x = 3−1±0

2 = 1, and then z = 1.

Solution 2. Let’s make variable substitution u = x − 1, v = y − 1, w = z − 1. We
obtain the system {

(u+ 1)(v + 1)(w + 1) = uvw + 1 ,

(u− 1)(v − 1)(w − 1) = uvw − 1 ,

(where the latter equation actually corresponds to the difference between two original
equations).

After expanding all parentheses and reducing common terms we have{
uv + uw + vw + u+ v + w = 0 ,

− (uv + uw + vw) + u+ v + w = 0 .

By taking the sum and the difference of these equations, we obtain uv+uw+vu = 0
and u+ v + w = 0. Finally, observe that

u2 + v2 + w2 = (u+ v + w)2 − 2(uv + uw + vw) = 0− 0 = 0 ,

from which u = v = w = 0 follows, and x = y = z = 1.

Solution 3. Consider the polynomial f(t) = (t− x)(t− y)(t− z) with roots x, y, z.
We can rewrite the system as {

− f(1) = −f(0)− 1 ,

− f(2) = −f(0)− 2 .

Now consider the polynomial g(t) = f(t)− f(0)− t. Its main coefficient is 1, and 0,
1 and 2 are its roots. Hence g(t) = t(t− 1)(t− 2). It follows that

f(t) = g(t) + t+ f(0) = t(t− 1)(t− 2) + t+ f(0) =

= t(t2 − 3t+ 3) + f(0) = t3 − 3t2 + 3t− 1 + f(0) + 1 = (t− 1)3 + f(0) + 1 .
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Observe that (t−1)3+f(0)+1 is an increasing function, which means that different
real numbers cannot be its roots. So x = y = z and also x is also the root of the
derivative of f(t). But f ′(t) = 3(t− 1)2, hence x = y = z = 1.

Problem 2. A convex quadrilateral ABCD is circumscribed about a circle ω. Let
PQ be the diameter of ω perpendicular to AC. Suppose lines BP and DQ intersect
at point X, and lines BQ and DP intersect at point Y . Show that the points X
and Y lie on the line AC. (Géza Kós)

Solution. The role of points P and Q is symmetrical, so without loss of generality
we can assume that P lies inside triangle ACD and Q lies in triangle ABC.

Part 1. Denote the incircles of triangles of ABC and ACD by ω1 and ω2 and denote
their points of tangency on the diagonal AC by X1 and X2, respectively. We will
show that line BP passes through X1, DQ passes through X2 and X1 = X2. Then
it follows that X = X1 = X2 is lying on AC (fig. 1).

A

B

C

D

P

Q

X1 = X2

ω

ω1

ω2

Figure 1: for the solution of the problem 2.

As is well-known, the tangent segments AX1 and AX2 to the incircles can be ex-
pressed in terms of the side lengths as

AX1 =
1

2
(AB +AC −BC) and AX2 =

1

2
(AC +AD − CD) .

Since the quadrilateral ABCD has an incircle, we have AB +CD = BC +AD and
therefore

AX1 −AX2 =
1

2
(AB −BC −AD + CD) = 0 ;

this proves X1 = X2.
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By having the common tangents BA and BC, the circles ω are ω1 are homothetic
with center B. The tangents to ω atX1 and to ω1 at P are parallel, so this homothety
maps P to X1. Hence, the points B, P , X1 are collinear.

Similarly, from the homothety that maps ω to ω2, one can see that D, Q, X2 are
collinear.

Part 2. Now let γ1 and γ2 be the excircles of triangles of ABC and ACD, opposite to
vertices B and D, respectively, and denote their points of tangency on the diagonal
AC by Y1 and Y2, respectively. Analogously to the first part, we will show that line
BQ passes through Y1, DP passes through Y2 and Y1 = Y2 (fig. 2).

A

B

C

D

P

Q

Y1 = Y2

ωγ1

γ2

Figure 2: for the solution of the problem 2.

The tangent segments CY1 and CY2 to the excircles can be expressed as

CY1 =
1

2
(AB +AC −BC) and CY2 =

1

2
(AC +AD − CD) ;

by AB + CD = BC +AD it follows that CY1 = CY2, so Y1 = Y2.

The circles ω and γ1 are homothetic with center B. The tangents to ω and γ1 at Q
and Y1 are parallel so this homothety maps Q to Y1. Hence, the points B, Q, Y1 are
collinear.

Similarly, from the homothety that maps ω to γ2, one can see that D, P , Y2 are
collinear.

Problem 3. Let k be a positive integer such that p = 8k + 5 is a prime number.
The integers r1, r2, . . . , r2k+1 are chosen so that the numbers 0, r41, r42, . . . , r42k+1 give
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pairwise different remainders modulo p. Prove that the product∏
16i<j62k+1

(
r4i + r4j

)
is congruent to (−1)k(k+1)/2 modulo p.

(Two integers are congruent modulo p if p divides their difference.) (Fedor Petrov)

Solution 1. We use the existence of a primitive root g modulo p, that is, such an
integer number that the numbers 1, g, g2, . . . , gp−2 give all different non-zero remain-
ders modulo p. Two powers of g, say gm and gk, are congruent modulo p if and only
if m and k are congruent modulo p − 1 (the “if” part follows from Fermat’s little
theorem and the “only if” part from g being primitive root).

There exist exactly 2k+1 non-zero fourth powers modulo p, namely, 1, g4, g8, . . . , g8k,
thus the numbers r41, . . . , r42k+1 are congruent modulo p to them in some order.

Define the map f(j) : {0, 1, . . . , 2k} → {0, 1, . . . , 2k} as a remainder of 2j modulo
2k + 1. Note that 8j and 4f(j) are congruent modulo 4(2k + 1) = p − 1, therefore
g8j ≡ g4f(j) (mod p) for all j = 0, 1, . . . , 2k.

We have∏
16i<j62k+1

(r4j + r4i ) =
∏

16i<j62k+1

r8j − r8i
r4j − r4i

≡

≡
∏

06i<j62k

g8j − g8i

g4j − g4i
≡

∏
06i<j62k

g4f(j) − g4f(i)

g4j − g4i
(mod p) .

We may write g4f(j)− g4f(i) = ±(g4max(f(j),f(i))− g4min(f(j),f(i))), where the sign is
positive if f(j) > f(i) and negative if f(j) < f(i). Further, when the ordered pair
(i, j) runs over all k(2k+1) ordered pairs satisfying 0 6 i < j 6 2k, the ordered pair(
min(f(j), f(i)),max(f(j), f(i))

)
runs over the same set. Therefore the differences

cancel out and the above product of the ratios
∏ g4f(j)−g4f(i)

g4j−g4i equals (−1)N , where
N is the number of pairs i < j for which f(i) > f(j). This in turn happens when
i = 1, 2, . . . , k; j = k + 1, . . . , k + i, totally N = 1 + . . .+ k = k(k + 1)/2. Thus the
result.

Solution 2. Denote ti = r4i . Notice that the set T := {t1, . . . , t2k+1} consists of
distinct roots of the polynomial x2k+1 − 1 (over the field of residues modulo p). Let
us re-enumerate T so that tk+1 = 1, ti = 1/t2k+2−i for i = 1, 2, . . . , k. The map
t 7→ t2 is a bijection on T , the inverse map is s 7→ sk+1 and we naturally denote
it
√
s. For distinct elements t, s ∈ T we have t + s =

√
st(
√
s/t +

√
t/s). In the

following formula
∏

denotes the product over all k(2k+1) pairs of distinct elements
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t, s ∈ T . We have

∏
(t+ s) =

∏√
st ·
∏(√

s/t+
√
t/s
)
=

(∏
t∈T

t

)k

·

(
k∏

i=1

(ti + 1/ti)

)2k+1

.

The first multiple equals 1 by Vieta’s formulas for x2k+1 − 1 =
∏

t∈T (x− t). As for
the second multiple, note that there is a polynomial ψ(x) with integer coefficients
satisfying

ψ
(
x+

1

x

)
= xk + xk−1 + . . .+ 1 + . . .+ x−k .

Obviously, the leading coefficient in ψ is 1. The constant term can be accessed by
substituting the complex unit x = i; the constant term is

ψ(0) = ψ
(
i +

1

i

)
=

k∑
j=−k

ij =

{
1 if k ≡ 0, 1 (mod 4) ,

−1 if k ≡ 2, 3 (mod 4) .

The roots of ψ in the modulo p field are exactly ti + 1/ti, i = 1, 2, . . . , k (they are
distinct). The product of the roots is

k∏
i=1

(ti + 1/ti) = (−1)k · ψ(0) =

{
1 if k ≡ 0, 3 (mod 4) ,

−1 if k ≡ 1, 2 (mod 4) .

Finally, we conclude

∏
(t+ s) =

{
1 if k ≡ 0, 3 (mod 4) ,

−1 if k ≡ 1, 2 (mod 4) .
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The 3rd Olympiad of Metropolises

Day 2. Solutions

Problem 4. Let 1 = d0 < d1 < . . . < dm = 4k be all positive divisors of 4k, where
k is a positive integer. Prove that there exists i ∈ {1, . . . ,m} such that di−di−1 = 2.

(Ivan Mitrofanov)

Solution 1. Assume the contrary. This means that if d and d + 2 both divide 4k,
then d+1 also divides 4k. Note that if a divides 4k and a is not divisible by 4, then
2a also divides 4k. Using the properties above, we start from the pair (1, 2) and find
more pairs (a, a+ 1) such that both a and a+ 1 divide 4k and both a and a+ 1 are
not divisible by 4.

Let (a, a+1) be a pair of divisors of 4k such that 4 divides neither a nor a+1. Then
2a and 2a+2 divide 4k, hence 2a+1 divides 4k. One of 2a or 2a+2 is not divisible
by 4, hence in one of pairs (2a, 2a+1), (2a+1, 2a+2) both numbers divide 4k, but
are not divisible by 4.

Apply this procedure to the new pair, and so on. Thus, starting from the pair (1, 2)
we obtain pairs (2, 3), (5, 6), (10, 11), etc. At each step the sum of numbers in pair
increases, hence we obtain an infinite set of divisors of 4k. A contradiction.

Solution 2. Assume the contrary. Let t be the minimal positive integer that does
not divide 4k. Then 1, 2, . . . , t − 1 divide 4k, while t and t + 1 do not (otherwise
t− 1 and t+ 1 would be two consecutive divisors of 4k).

It follows that t and t + 1 are prime powers, otherwise one of them would be a
product of two coprime multiples less than t and would therefore divide 4k. One of
them is a power of 2 that we denote as 2m, m > 3. The other has a form of 2m + ε,
ε = ±1.
Observe that 2m−1 divides 4k, since 2m is the minimal even non-divisor of 4k, and
that 3 ·2m−2+ε divides 4k, since it is odd and less than 2m+ε, which is the minimal
odd non-divisor of 4k. Also note that 3 divides 4k.

It follows that 3 · 2m−1 and 2 · (3 · 2m−2 + ε) also divide 4k. Hence, the number
3 ·2m−1+ ε between them divides 4k too. But now 4k is divided by 2 · (3 ·2m−1+ ε),
just as 4 · (3 · 2m−2 + ε). The number 3 · (2m + ε) is between them, and must be a
divisor of 4k as well. We conclude that 2m + ε divides 4k, contradiction.

Problem 5. Ann and Max play a game on a 100× 100 board.

First, Ann writes an integer from 1 to 10 000 in each square of the board so that
each number is used exactly once.
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Then Max chooses a square in the leftmost column and places a token on this square.
He makes a number of moves in order to reach the rightmost column. In each move
the token is moved to a square adjacent by side or by vertex. For each visited square
(including the starting one) Max pays Ann the number of coins equal to the number
written in that square.

Max wants to pay as little as possible, whereas Ann wants to write the numbers in
such a way to maximise the amount she will receive. How much money will Max
pay Ann if both players follow their best strategies? (Lev Shabanov)

Answer: 500 000 coins.

Solution. Lower bound / Ann’s strategy. First we will prove that Ann can get at
least 500 000 coins. Suppose Ann has arranged the numbers in the way depicted on
the fig. 1.

1 200 201 400 · · · 9800 9801 10000

2 199 202 399 · · · 9799 9802 9999

3 198 203 398 · · · 9798 9803 9998

4 197 204 397 · · · 9797 9804 9997
···

···

···

··· · · ·

···

···

···

98 103 298 303 · · · 9703 9898 9903

99 102 299 302 · · · 9702 9899 9902

100 101 300 301 · · · 9701 9900 9901

Figure 1: for the solution of problem 5.

Consider a path constructed by Max. For every integer 1 6 n 6 50 there are two
squares of the path in the columns 2n − 1 and 2n, respectively, which are adjacent
by a move of the token. It is easy to see that the sum of the numbers in such
squares is at least 200(2n − 1). We obtain that the cost of this path is at least
200(1 + 3 + 5 + . . .+ 99) = 500 000 coins.

Upper bound / Max’s strategy. Now consider an arbitrary arrangement of the num-
bers. Then exclude the square with the greatest number in each column. The least
of the numbers in excluded squares is not less than 100, the second least is not less
than 200, etc, the greatest number in excluded square is 10 000. Hence, the sum of
the excluded numbers is at least 100+200+ . . .+10 000 = 505 000, while the sum of
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numbers in the whole square is 50 005 000. It means that the sum of the remaining
numbers is at most 49 500 000.

The 9900 squares which are left can be split into 99 distinct paths. The first path
consists of the lowest squares in each column which are not excluded, the second
path consists of the lowest squares in each column which are not excluded and not
included into the first path, etc. The last path will include the uppermost squares
in each column which are not excluded. It is easy to see that all 99 paths are proper
paths that Max’s token can follow, because any two squares in two adjacent columns
either lie in the same row or in two adjacent rows.

The total cost of the constructed 99 paths is not greater than 49 500 000, therefore
one of these paths costs at most 500 000 coins. Thus in every arrangement of numbers
Max can pay less than or equal to 500 000 coins.

We proved that Max can pay 500 000 coins or less while Ann can make Max pay at
least 500 000 coins, so the answer is 500 000.

Alternate proof of the upper bound. Split our board into 50 horizontal rectangles
2 × 100. Since the sum of numbers in the whole board is 50 005 000, it is possible
to choose a rectangle with the sum of at most 1 000 100. Take a square with the
minimum number in each column of the chosen rectangle. These squares form a path
from the square in the left column to the square in the right column; denote the cost
of this path as S. In each column of the rectangle, the minimal number is less than
the other number by at least 1. Hence, the total sum of the numbers in the rectangle
is at least 2S + 100. It follows that 2S + 100 6 1 000 100 and S 6 500 000.

Problem 6. The incircle of a triangle ABC touches the sides BC and AC at points
D and E, respectively. Suppose P is the point on the shorter arc DE of the incircle
such that ∠APE = ∠DPB. The segments AP and BP meet the segment DE at
points K and L, respectively. Prove that 2KL = DE. (Dušan Djukić)

A property of the symmedian. The symmedian of a triangle from one of its vertices
is defined as the reflection of the median from that vertex about the bisector from
the same vertex (fig. 2). In the following solutions we will use a well-known property
of the symmedian, namely that it passes through the intersection of the tangents to
the circumcircle of the triangle taken at the other two vertices.

Solution 1. Denote by F the tangency point of the incircle with the side AB, and
by M and N respectively the midpoints of the segments EF and DF (fig. 3). Since
PB is the symmedian in the triangle DPF , we have ∠KPE = ∠DPB = ∠NPF .
Moreover, ∠PEK = ∠PED = ∠PFN , so 4PEK ∼ 4PFN . Analogously,
4PDL ∼ 4PFM . Now we obtain EK = FN · PE

PF = DF ·PE
2PF and similarly

DL = FM · PD
PF = EF ·PD

2PF , so EK + DL = DF ·PE+EF ·PD
2PF = 1

2DE by Ptolemy’s
theorem. Therefore, KL = DE − EK −DL = 1

2DE.

Solution 2. Denote by F the tangency point of the incircle with the side AB. Con-
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Figure 2: for the solution of problem 6.

A B

C

D

E

P

K
L

M
N

F

Figure 3: for the solution of problem 6.

sider a point S on the segment ED such that ∠PSE = ∠PDF and ∠PSD = ∠PEF
(fig. 4). Triangles PSE and PDF are similar because ∠PED = ∠PFD. Since
∠DPB = ∠KPE and PB is a symmedian in triangle PDF , the line PK must
be a median in the triangle PSE. It follows that EK = KS. Similarly, we have
DL = LS. Therefore, 2KL = 2KS + 2SL = EK +KS + SL+ LD = ED.

Solution 3. Again, denote by F the tangency point of the incircle with the side AB.
Let the segments AP and BP intersect the incircle again at X and Y , respectively.
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Figure 4: for the solution of problem 6.
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P

K L

F

X

Y

Q

Figure 5: for the solution of the problem 6.

Since the arcs EX and DY are congruent, we have XY ‖ DE. Let the lines PF and
EY meet at point Q (fig. 5). The quadrilaterals EPFX and Y FPD are harmonic,
and the projection with the center Q from the incircle to itself maps points E,P, F
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to Y, F, P , respectively. Therefore, this projection also sends X to D, i. e. the line
XD also passes through Q.

Now let ` be the line passing through the intersection point of XE and Y D, parallel
to DE. Consider the projective transformation preserving the incircle that takes
line ` to the infinity line. The lines DE, XY and ` will remain parallel under this
transformation and the ratio KL/DE will not change. Moreover, the quadrilaterals
XEPF and DY FP will remain harmonic. Thus we obtain fig. 6.

D

Y

E

X

P

F

K L

U V

Figure 6: for the solution of the problem 6.

The quadrilateral XYDE is a rectangle and Q is the center, so P and F are diamet-
rically opposite. Suppose the line XY meets the segments EF and DF at points
U and V , respectively. Since XP is a symmedian in 4EXF and the shorter arcs
EP and FY are equal, the line XU is a median in 4EXF , i. e. EU = UF . Anal-
ogously, DV = V F . It follows that the triangles EFD and UFV are proportional,
so DE/2 = UV = KL by symmetry.
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