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SHORT HISTORY AND SYSTEM

Mathematical society of Serbia runs mathematical competitions since 1958,
including school, municipal, regional and republic rounds. The first federal level
competition in the former Yugoslavia, which Serbia was a part of, was held in 1960.
for senior high school students only - second and first grade students were added
in 1970 and 1974, respectively. The team for international competitions used to be
selected through the Federal competition, with an additional selection test when
needed. After the breakdown of the old Yugoslavia, this system was continued in
the newly formed FR Yugoslavia, later renamed Serbia and Montenegro, but with
problems divided into A and B categories (specialized schools and others) since
1999. Since 2007, after the separation of Montenegro, the Federal competition
has been replaced with a two-day Serbian Mathematical Olympiad, although ad-
hoc team selection tests were still occasionally held. An additional two-day team
selection competition has been officially added in 2017.

A mathematical competition season in Serbia now consists of the following
rounds:

1 Municipal round, held in December or January, with 5 problems in 3 hours.

2 Regional round, held in February, again with 5 problems in 3 hours.

3 State (republic) round, held in March in a selected town in the country, with
4 or 5 problems (in A and B category) in 4 hours. There are 300 to 400
participants in total.

4 Serbian Mathematical Olympiad (SMO), held in late March/early April in
the IMO format. The maximum score is 42. There are 30 to 35 participants.
Top six are invited to the Balkan MO team.

5 IMO Team Selection Competition, held after the Balkan MO, again in the
IMO format. The maximum score is 42. Top 12 from the SMO take part.
The scores are added to those from SMO, where Balkan MO team participants
get bonus points for gold (7) and silver medals (3) for the grand total of at
most 91. Top six in the total score are invited to the IMO team.
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The 11-th Serbian Mathematical Olympiad (SMO) for high school students took
place in Belgrade on March 31 and April 1, 2017. There were 34 students from
Serbia and 1 guest student from Republika Srpska (Bosnia and Herzegovina). The
average score on the contest was 16.15 points. Problems 1, 2 and 4 were easier,
and problems 3, 5 and 6 turned out to be difficult.

Top 12 students (and 1 unofficial) were invited to the IMO Team Selection
Competition (TST) that took place in Belgrade on May 21-22. The average score
on this test was 17.08 points. The team for the 57-th IMO was selected based on
the results:

Name School Total score
Aleksa Milojević Math High School, Belgrade 60 points
Pavle Martinović Math High School, Belgrade 58 points
Igor Medvedev Math High School, Belgrade 53 points
Jelena Ivančić Math High School, Belgrade 51 points

Marko Medvedev Math High School, Belgrade 47 points
Ognjen Tošić Math High School, Belgrade 43 points

In this booklet we present the problems and full solutions of the Serbian Math-
ematical Olympiad, IMO Team Selection Competition and Balkan Mathematical
Olympiad.

Serbian MO 2017 – Problem Selection Committee

• Vladimir Baltić
• Bojan Bašić (chairman)
• Dušan Djukić
• Miljan Knežević
• Nikola Petrović
• Marko Radovanović
• Miloš Stojaković
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade , 31.03.2017.

First Day

1. Let a, b and c be positive real numbers with a+ b+ c = 1. Prove the inequality

a
√
2b+ 1 + b

√
2c+ 1 + c

√
2a+ 1 6

√

2− (a2 + b2 + c2).

(Nikola Petrović)

2. A convex quadrilateral ABCD is inscribed in a circle. The lines AD and BC meet
at point E. Points M and N are taken on the sides AD i BC, respectively, so that
AM : MD = BN : NC. Let the circumcircles of triangle EMN and quadrilateral
ABCD intersect at points X and Y . Prove that either the lines AB, CD and XY
have a common point, or they are all parallel. (Dušan Djukić)

3. There are 2n− 1 bulbs in a line. Initially, the central (n-th) bulb is on, whereas all
others are off. A step consists of choosing a string of at least three (consecutive)
bulbs, the leftmost and rightmost ones being off and all between them being on,
and changing the states of all bulbs in the string (for instance, the configuration
• ◦ ◦ ◦ • will turn into ◦ • • • ◦). At most how many steps can be performed?

(Dušan Djukić)

Time allowed: 270 minutes.
Each problem is worth 7 points.



4

SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade, 01.04.2017.

Second Day

4. Suppose that a positive integer a is such that, for any positive integer n, the number
n2a− 1 has a divisor greater than 1 and congruent to 1 modulo n. Prove that a is
a perfect square. (Dušan Djukić)

5. Determine the maximum number of queens that can be placed on a 2017 × 2017
chessboard so that each queen attacks at most one of the others.

(Bojan Bašić and PSC)

6. Let k be the circumcircle of triangle ABC, and let ka be its excircle opposite to
A. The two common tangents of k and ka meet the line BC at points P and Q.
Prove that ∢PAB = ∢QAC. (Dušan Djukić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

1. After squaring both sides and using the equality 1− a2 + b2 + c2 = 2(ab+ bc+ ca),
the required inequality becomes

L = 2a2b+ 2b2c+ 2c2a+

2ab
√

(2b+ 1)(2c+ 1) + 2bc
√

(2c+ 1)(2a+ 1) + 2ca
√

(2a+ 1)(2b+ 1) 6
R = 4(ab+ bc+ ca).

The AM-GM inequality gives us 2ab
√

(2b+ 1)(2c+ 1) 6 ab(2b + 2c + 2) and

analogously 2bc
√

(2c+ 1)(2a+ 1) 6 bc(2c + 2a + 2) and 2ca
√

(2a+ 1)(2b+ 1) 6
ca(2a+ 2b+ 2), so summing these up yields

L 6 2(a2b+ b2c+ c2a+ ab2 + bc2 + ca2 + 3abc) + 2(ab+ bc+ ca) =
2(a+ b+ c+ 1)(ab+ bc+ ca) = 4(ab+ bc+ ca) = R.

Second solution. Function f(x) =
√
x is concave because f ′(x) = 2/

√
x is decreas-

ing. Then Jensen’s inequality with weights a, b and c gives

a
√
2b+ 1 + b

√
2c+ 1 + c

√
2a+ 1 6

√

a(2b+ 1) + b(2c+ 1) + c(2a+ 1)

=
√

1 + 2(ab+ bc+ ca) =
√

2− (a2 + b2 + c2).

Remark. If we allow the numbers a, b, c to be zero, equality is attained if a = b =
c = 1

3
or (a, b, c) = (1, 0, 0) with permutations.

2. If AB ‖ CD, the statement is trivial: points X and Y are symmetric with respect
to the perpendicular bisector of AB and CD, and hence AB ‖ XY ‖ CD.

Assume AB 6‖ CD. Then the circumcircles k1 and k2 of triangles EAB and ECD
meet at a point P 6= E. Since ∢PAD =
∢PBE and ∢PDA = 180◦ − ∢PDE =
180◦−∢PCE = ∢PCB, triangles PAD
and PBC are similar. Moreover, point
M in △PAD corresponds to point N in
△PBC, so ∢PME = ∢PNE. There-
fore, points E, P , M and N lie on some
circle k3.

Since F has the same power FA · FB =
FC ·FD to circles k1, k2 and the circum-

A B

C

D

E

F

M
N

P

O1

O2

O3

X

Y

k

k1
k2 k3
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circle k of ABCD, it lies on the radical axis EP of k1 and k2. Thus FA · FB =
FE · FP , so F also lies on the radical axis of k1 and k3, which is line XY .

Second solution. Let k, k1, k2 and k3 be the circumcircles of ABCD, EAB, ECD
and EMN . We should prove that the radical centers of the triples (k, k1, k2) and
(k, k1, k3) coincide (possibly at infinity). It suffices to show that circles k1, k2, k3
are coaxial, i.e. that their centers O1, O2, O3 are collinear.

For i = 1, 2, 3, denote by Ei the point symmetric to E with respect to Oi. Let
E′

3 be the point on segment E1E2 such that E1E
′
3 : E′

3E2 = AM : MD. Since
E1A ⊥ AD and E2D ⊥ AD, Thales’ theorem gives E′

3M ⊥ AD; analogously, we
have E′

3N ⊥ BC, so E′
3 ≡ E3.

3. The answer is
[
2n+1−5

3

]

.

Assign to the i-th bulb the number 2|i−n| and define the value of a configuration as
the sum of numbers assigned to the bulbs that are on. The initial configuration has
value 1. With each step, the value increases by a multiple of 3. If a step switches
the n-th bulb, the value increases by exactly 3; we call such steps good.

Since the value cannot exceed 2n+1 − 4 (for not all bulbs can be on), one cannot

make more than [ 2
n+1−5

3 ] steps. In order to show that this number can be attained,

it suffices to show that at least 2n+1−7
3 good steps can be made.

We prove by induction on n that, starting with a configuration of value at most
3, we can reach a configuration of value at least 2n+1 − 6 by a sequence of good
steps. For n 6 2 this is directly verified. Let n > 3. By the inductive hypothesis
for n− 1, it is possible to reach a configuration with the first and last bulb off, and
value at least 2n − 6. In such a configuration, other than the outer two, the bulbs
that are off can be (1◦) only the n-th, (2◦) only the n-th and an adjacent one, or
(3◦) only one bulb adjacent to the n-th. In each of these three cases, in at most
three good steps we reach a configuration in which the two outer bulbs are on and
the value of the rest of the configuration (not counting these two) is at most 3.

1 n 2n−1
• ◦ · · · ◦ ◦ • ◦ ◦ · · · ◦ •

↓
◦ • · · · • • ◦ ◦ ◦ · · · ◦ •

↓
◦ • · · · • ◦ • • • · · · • ◦

(1◦)

1 n 2n−1
• ◦ · · · ◦ ◦ • • ◦ · · · ◦ •

↓
◦ • · · · • • ◦ • ◦ · · · ◦ •

↓
◦ • · · · • ◦ • ◦ ◦ · · · ◦ •

↓
◦ • · · · • ◦ ◦ • • · · · • ◦

(2◦)

1 n 2n−1
• ◦ · · · ◦ ◦ ◦ • ◦ · · · ◦ •

↓
◦ • · · · • • • ◦ ◦ · · · ◦ •

↓
◦ • · · · • • ◦ • • · · · • ◦

(3◦)

Now we can apply the inductive hypothesis for n−1 again, finishing the induction.
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4. Let n2a − 1 = (nxn + 1)dn (xn, dn ∈ N). Then dn ≡ −1 (mod n), which means
that

n2a− 1 = (nxn + 1)(nyn − 1) for some xn, yn ∈ N,

which is equivalent to na−nxnyn = yn−xn > −xnyn. It follows that xn 6 xnyn <
n

n−1a 6 2a. Therefore, there is a number X that occurs infinitely often in the

sequence x1, x2, . . . . Thus for infinitely many values of n we have nX +1 | n2a− 1
and hence

nX + 1 | X2(n2a− 1)− a(n2x2 − 1) = a−X2.

This is only possible if a−X2 = 0, i.e. X2 = a.

Second solution. As in the first solution, let n2a − 1 = (nxn + 1)(nyn − 1), i.e.
yn − xn = n(a− xnyn) = ndn. We distinguish three cases.

(1◦) If dn > 0, then a = dn + xn(xn + ndn) > ndnxn, which is impossible for
n > a.

(2◦) If dn < 0, then a = dn + yn(yn − ndn) = y2n − dn(nyn − 1) > nyn − 1, which
is impossible for n > a+ 1.

(3◦) If dn = 0, then a = x2
n is a perfect square

5. Denote n = 2017. Suppose that we have placed m > n queens. No row contains
more than two queens, so there are at least m−n rows with two queens, and hence
at most m− 2(m−n) = 2n−m are alone in their rows. Similarly, at most 2n−m
queens are alone in their columns. On the other hand, every queen is alone in its
row or column, which means that m 6 2(2n−m). Thus m 6 [ 4n3 ] = 2689.

Image A shows 8 queens placed on a 6 × 6 board under the problem condition.
Before proceeding to the 2017× 2017 board, consider the following arrangement:

• On a 335× 335 board, one can place 335 queens so that they do not attack
each other even if the diagonals are extended modulo 335. Indeed, it suffices to
place queens on the squares (x, y) with 1 6 x, y 6 335 and y ≡ 2x (mod 335),
as on image B. Then all the sums x+y are different modulo 335 and so are the
differences x− y, so no two queens are in the same row, column or extended
diagonal.

335335335335335335 6 1

3
3
5
3
3
5
3
3
5
3
3
5
3
3
5
3
3
5
6
1

Q Q

Q

Q

QQ

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

A - 6× 6 board

B - 335× 335 board C - 2017× 2017 board

B

B

B B

B B

B

B

A
Q
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Let us divide the 2017 × 2017 board into rectangles and squares with sides 335,
6 and 1, as on image C. We arrange queens on the squares denoted B and A as
shown on images B and A, and put one more queen in the upper-right cell. Thus
we have placed 8 · 335 + 8 + 1 = 2689 queens in total. It is easily verified that this
arrangement fulfills the requirements.

Remark. The n × n board whose diagonals are extended modulo n is known as
a torus board. It is known that it is possible to place n mutually non-attacking
queens on a torus board n× n if and only if n ≡ ±1 (mod 6).

6. Let the interior and exterior bisector of angle BAC respectively meet the line BC
at points D and (possibly infinite) D1. The common tangents meet at the center
T of positive homothety H which maps the excircle ωa to the circumcircle Ω. If T
is an infinite point, then H is a translation and the proof remains unchanged.

Lemma. Let an arbitrary line p through D1 intersect Ω at points K and L. The
tangents to Ω at K and L meet line BC at points P i Q, respectively. Then
∢PAB = ∢CAQ.

Proof. If D1 is an infinite point, the statement is trivial by symmetry. Otherwise,

from △PBK ∼ △PKC we get PB
PK

= PK
PC

= KB
KC

and hencePB
PC

=
(
KB
KC

)2
.

Similarly, QB
QC

=
(
LB
LC

)2
. Since KB

KC
· LB
LC

= [KLB]
[KLC]

= D1B
D1C

= AB
AC

, it follows

that PB
PC

· QB
QC

=
(
AB
AC

)2
, which is equivalent to ∢PAB = ∢CAQ. 2

If the common tangents touch Ω at K and L, it remains to prove that point D1
lies on the line KL, which is the polar of
point T in Ω. By the duality principle,
it is enough to prove that T lies on the
polar d of point D1 in Ω.

Denote by N the midpoint of arc BAC
of circle Ω. Homothety H maps point D
to the intersection point S of tangents
to Ω at A and N , so the line DS passes
through T . On the other hand, point D
lies on the polar d because the quadru-
ple (B,C;D1, D) is harmonic, whereas
point S lies on d because the polar of S

A

B
CD

D1

Ia

K

L

M

N

O

P

Q

S

T

Ω
ωa

d

in Ω, which is line AN , passes through D1. Hence the lines DS and d coincide,
completing the proof.

Second solution. Let the common tangents touch Ω at K and L, where LP is the
tangent closer to B. Denote by M the midpoint of arc BC not containing A, and
by O and Ia the circumcenter and excenter opposite to A, respectively.
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Since ∢LPIa = 90◦ + 1
2
∢LPC and ∢LAIa = ∢LAM = 1

2
∢LOM = 1

2
∢LPD1 =

90◦ − 1
2∢LPC, it follows that ∢LPIa + ∢LAIa = 180◦, i.e. the quadrilateral

ALPIa is cyclic. Similarly, AKQIa is also cyclic. Now ∢PAIa = ∢PLIa =
∢QKIa = ∢QAIa because the angles PLIa and QKIa are symmetric in OIa, and
hence ∢PAB = ∢QAC.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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IMO TEAM SELECTION COMPETITION

Belgrade, 21.05.2017.

First Day

1. Let D be the midpoint of side BC of a triangle ABC. Points E and F are taken
on the respective sides AC and AB such that DE = DF and ∢EDF = ∢BAC.
Prove that

DE >
AB + AC

4
.

(Dušan Djukić)

2. Given an ordered pair of positive integers (x, y) with exactly one even coordinate,
a step maps this pair to (x2 , y + x

2 ) if 2 | x, and to (x + y
2 ,

y
2 ) if 2 | y. Prove that,

for every odd positive integer n > 1 there exists an even positive integer b, b < n,
such that after finitely many steps the pair (n, b) maps to the pair (b, n).

(Bojan Bašić)

3. Call a function f : N → N lively if

f(a+ b− 1) = f(f(· · ·f
︸ ︷︷ ︸

a times

(b) · · · ))for all a, b ∈ N.

Suppose that g is a lively function such that g(A+2018) = g(A)+1 holds for some
A > 2.

(a) Prove that g(n+ 20172017) = g(n) for all n > A+ 2.

(b) If g(A+ 20172017) 6= g(A), determine g(n) for n 6 A− 1.
(Marko Radovanović)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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IMO TEAM SELECTION COMPETITION

Belgrade, 22.05.2017.

Second Day

4. An n × n square is divided into unit squares. One needs to place a number of
isosceles right triangles with hypotenuse 2, with vertices at grid points, in such a
way that every side of every unit square belongs to exactly one triangle (i.e. lies
inside it or on its boundary). Determine all numbers n for which this is possible.

(Dušan Djukić)

5. For a positive integer n > 2, let C(n) be the smallest positive real constant such
that there is a sequence of n real numbers x1, x2, . . . , xn, not all zero, satisfying
the following conditions:

(i) x1 + x2 + · · ·+ xn = 0;

(ii) for each i = 1, 2, . . . , n, it holds that xi 6 xi+1 or xi 6 xi+1 + C(n)xi+2 (the
indices are taken modulo n).

Prove that:

(a) C(n) > 2 for all n;

(b) C(n) = 2 if and only if n is even. (Dušan Djukić)

6. Let k be a positive integer and let n be the smallest positive integer having exactly
k divisors. If n is a perfect cube, can the number k have a prime divisor of the
form 3j + 2? (Bojan Bašić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

1. We may assume that AB 6 AC. Let M and N be the midpoints of sides AC and
AB, respectively, and let M ′ be the
point on segment DN such that DM ′ =
DN . Since ∢M ′DF = ∢MDE, trian-
gles DME and DM ′F are congruent, so
∢FM ′N = 180◦ − ∢DM ′F = 180◦ −
∢DME = ∢BAC = ∢FNM ′, which
means that △FM ′N is isosceles. The
midpoint K of M ′N is also the foot of

A

B CD

E

F

K
M

M ′

N

the perpendicular from F to M ′N , so DF > DK = DM ′+DN
2 = AB+AC

4 .

Second solution. Assume that E lies on segment AM . Denote x = ∢MDE =

∢NDF . By the law of sines in △MDE and △NDF we have DM
DE

= sin(α−x)
sinα

and
DN
DF

= sin(α+x)
sinα

, and therefore b+c
4DE

= DM+DN
2DE

= sin(α+x)+sin(α−x)
2 sinα

= cosx 6 1.

Remark. One obtains 4 ·DE =
√

(b+ c)2 + (b− c)2 tg2α.

2. Denote by (xk, yk) the pair obtained after k steps. The sum xk + yk is invariant
and equals s = n+b. Since 2 · (x+ y

2 ) ≡ 2 · x2 ≡ x (mod x+y), we have 2xk ≡ xk−1

(mod s). A simple induction yields

2kxk ≡ x0 = n (mod s).

Since (s, 2k) = 1, it is enough to prove the existence of an odd number s, n < s <
2n, such that for some k we have 2kb ≡ n (mod s), i.e. (2k +1)n ≡ 0 (mod s). To
this end, one can simply take s = 2r + 1 and k = r, where 2r−1 < n < 2r (r ∈ N).
Thus b = 2r + 1− n.

Remark. Clearly, one can take any s such that s | 2k + 1 for some k ∈ N. For
example, s = 3i11j (i, j ∈ N0) works. From here, one can deduce that, given
any constants 0 < α < β, for all big enough n, there is a desired number b with
αn < b < βn.

3. If g(a) = g(a + d) for some a, d ∈ N, the problem condition gives g(a + n) =
gn+1(a) = gn+1(a + d) = g(a + n + d), implying that function g(x) is periodic
with period d for x > a. Such a and d actually exist: Indeed, g(A + 2019) =
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g(g(A + 2018)) = g(g(A) + 1) = g(g(g(A))) = g(A + 2), so it follows from above
that g(n+2017) = g(n) for n > A+2. Consider the smallest d for which such an a
exists; let a = a0 be the smallest such a. Since d is minimal, for x, y > a0 it holds
that g(x) = g(y) if and only if d | x− y. Clearly, d | 2017.
We immediately have g(n + 20172017) = g(n) for n > A + 2. On the other hand,
since g(A+20172017) 6= g(A), we deduce that A 6 a0 − 1, i.e. a0 ∈ {A+1, A+2}.
Suppose that g(a′) = g(a′ + d′) for some a′ 6 a0 − 1 and some d′ ∈ N. Then
function g(x) has period d′ for x > a′, which implies d | d′, but then we have
g(a0 − 1) = g(a0 − 1 + d′) = g(a0 − 1 + d), contradicting the minimality of a0.

Therefore, if g(x) = g(y) and x 6 a0 − 1, then x = y. Now the equality g(g(n)) =
g(n+ 1) for n+ 1 6 A 6 a0 − 1 implies g(n) = n+ 1.

Remark. The problem condition is equivalent to g(g(n)) = g(n+ 1) for all n.

For n > a0 − 1, equation g(g(n)) = g(n+ 1) implies g(n) ≡ n + 1 (mod d). Thus
every lively function g is of the form

g(n) =







n+ 1 for n 6 a0 − 2;
a0 + αd for n = a0 − 1;
a0 + i+ βid for n > a0 and n ≡ a0 + i (mod d), 0 6 i < d− 1,

where α, β0, . . . , βd−1 are arbitrary positive integers. It is straightforward to verify
that such a function is lively.

4. There are 2n(n + 1) unit segments on the grid, and each triangle covers three, so
we must have 3 | 2n(n+ 1), i.e. n ≡ 0 or n ≡ 2 (mod 3). Moreover, the segments
on the boundary of the big square have
to be covered by hypotenuses, so we
must also have 2 | n. Therefore, n ≡ 0
or n ≡ 2 (mod 6).

The left image shows desired arrange-
ments of triangles for n = 2 and n = 6,
whereas the right image shows that ev-
ery arrangement of triangles on an n×n
squares can be extended to (n+6)×(n+
6). A simple induction shows that a de-

2× 2

6× 6
n× n

(n+ 6) × (n+ 6)

sired arrangement exists whenever n = 6k or n = 6k − 4 for some k ∈ N.

5. The sequence cannot contain two adjacent non-positive terms. Indeed, if ai−1 >
0 > ai, ai+1, then ai−1 > max{ai, ai + C(n)ai+1}, contradicting (ii). Hence, the
sequence consists of blocks of positive terms followed by a single non-positive term.
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Consider an arbitrary block of positive terms ak, ak+1, . . . , ak+l−1. We call the term
ak initial and ak+l−1 final. Let P be the sum of all initial terms in the sequence,
K be the sum of the final ones, N be the sum of all non-positive terms, and S be
the sum of positive terms which are not initial or final.

Summing the inequalities ak+l−1 6 ak+l + C(n)ak+l+1 over all blocks yields K 6

N + C(n)P . Since N = −K − S − P , this relation becomes

2K 6 (C(n)− 1)P − S. (∗)

Suppose now that C(n) 6 2. Summing the inequalities ak+2i 6 ak+2i+1+2ak+2i+2

for 0 6 i 6 [ l−3
2 ] and adding the inequality ak+l−2 6 2ak+l−1 if 2 | l, we obtain

ak 6 ak+1 + ak+2 + · · ·+ ak+l−2 + 2ak+l−1. Summing over all blocks then yields

P 6 S + 2K. (∗∗)

Equality in (∗∗) is possible only if the length l of the block is odd. Indeed, if
2 | l, all inequalities participating in the sum must be equalities, so in particular
ak+l−2 = 2ak+l−1, which contradicts the condition ak+l−2 6 ak+l−1 > 0.

Summing (∗) and (∗∗) gives us 0 6 (C(n) − 2)P , and therefore C(n) > 2. More-
over, if C(n) = 2, all blocks must have odd lengths, which implies that n is even.
Conversely, the example xr = (−1)r shows that C(n) = 2 for even n.

Remark. In the case 2 | n there are nontrivial examples: For instance, if n = 4, one
can take (x1, x2, x3, x4) = (3a+ 2b, a, a+ b,−5a− 3b) for a ∈ R and b > 0.

It can be shown that C(3) = 3, C(5) = 1+
√
11

2
and limn→∞ C(n) = 2.

6. Suppose that such a k exists. Let p1 < p2 < . . . be all primes in the increasing
order and let n =

∏m
i=1 p

αi

i (αm > 0), where k = (α1 + 1) · · · (αm + 1) and 3 | αi

for all i. By the minimality of n we have α1 > . . . > αm > 0.

Lemma. Suppose that αr + 1 = ab for a, b ∈ N \ {1}. If ps < par < ps+1, then
αs > b− 1 > αs+1.

Proof. The number n1 = p
(αs+1)a−1
r pb−1

s

∏

i6∈{r,s} p
ri
i also has k divisors, so it satis-

fies n1 > n. However, this reduces to (par/ps)
αs−b+1 > 1, i.e. αs > b− 1.

Similarly, n′
1 = p

(αs+1+1)a−1
r pb−1

s+1

∏

i6∈{r,s+1} p
ri
i > n yields αs+1 6 b− 1. 2

Consider the largest r such that αr + 1 = ab for some a ≡ b ≡ 2 (mod 3), and let
s and t be such that ps < par < ps+1 and pt < pbr < pt+1. Observe that Bertrand’s
postulate implies 1

2
par < ps and ps+1 < 2par , hence

pa−1
r < ps < par < ps+1 < pa+1

r and analogously pb−1
r < pt < pbr < pt+1 < pb+1

r .
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It follows that s, t > r. We similarly obtain |s− t| 6= 1.

By the Lemma (since 3 | αi) we have αs > b − 1 > αs+1 and αt > a − 1 >

αt+1. Number n2 = p
(αs+1)(αt+1+1)−1
r pb−1

s pa−1
t+1

∏

i6∈{r,s,t+1} p
ri
i also has k divisors,

so n2 > n, i.e.

1 6
n2

n
=

p
(αs+1)(αt+1+1)−ab
r p

a−1−αt+1

t+1

pαs−b+1
s

<
p
(αs+1)(αt+1+1)−ab+(b+1)(a−1−αt+1)
r

p
(a−1)(αs−b+1)
r

= p1−(αs−b)(a−2−αt+1)
r ,

whence (αs − b)(a− 2 − αt+1) < 1. Since 3 | αs 6= b, we must have αt+1 = a − 2.
By the assumption, αi + 1 has no divisors of the form 3j + 2 if i > r, so if must
odd. In particular, 2 | αt+1, so 2 | a. Analogously, 2 | b, so αr = 4c − 1 for some
c ∈ N.

Since 2 | αm implies αm > 3 > 1 > αm+1 = 0, the Lemma for (a, b) = (2, 2c)
and (a, b) = (4, c) respectively gives us pm < p2cr < pm+1 and pm < pcr < pm+1.
However, this is impossible, as by the Bertrand’s postulate the interval (pcr, p

2c
r )

contains at least one prime.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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The 34-th Balkan Mathematical Olympiad was held from May 2 to May 7 in
Ohrid in FYR Macedonia. The results of the Serbian contestants are shown below:

1 2 3 4 Total
Nikola Pavlović 10 10 10 0 30 Bronze medal
Marko Medvedev 10 10 10 4 34 Silver medal
Igor Medvedev 10 10 10 9 39 Gold medal
Aleksa Milojević 10 10 10 10 40 Gold medal
Jelena Ivančić 10 10 10 0 30 Bronze medal

Pavle Martinović 10 10 10 5 35 Silver medal

It turned out that all official contestants with at least 30 points scored the maximal
30 on the first three problems. The fourth problem was the one making difference.
Thus the high medal cut-offs were expected: 7 contestants (6 official + 1 guest)
with 39-40 points were awarded gold medals, 21 (16+5) with 31-38 points were
awarded silver medals, and 44 (21+23) with 16-30 points were awarded bronze
medals.

Here is the (unofficial) team ranking:

Member Countries Guest Teams
1. Bulgaria 226 Italy 187
2. Serbia 208 Kazakhstan 179
3. Romania 182 Turkmenistan 132
4. Greece 174 Saudi Arabia 128
5. Bosnia and Herzegovina 169 Azerbaijan 114
6. Turkey 128 United Kingdom 98
7. Moldova 127 Macedonia B 36
8. Macedonia 104 Kyrgyzstan 34
9. Montenegro 87 Qatar 11

10. Albania 60
11. Cyprus 46
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BALKAN MATHEMATICAL OLYMPIAD

Ohrid, FYR Macedonia , 04.05.2017.

1. Find all ordered pairs (x, y) of positive integers such that:

x3 + y3 = x2 + 42xy + y2

(Moldova)

2. Let ABC be a triangle with AB < AC, and let Γ be its circumcircle. The tangent
to Γ at C and the line through B parallel to AC intersect at D. The tangent to Γ
at B and the line through C parallel to AB intersect at E. The tangents to Γ at
B and C intersect at L. The circumcircle of triangle BDC meets AC again at T
and the circumcircle of triangle BEC meets AB again at S.

Prove that the lines ST,BC and AL are concurrent. (Greece)

3. Let N be the set of positive integers. Find all functions f : N → N such that:

n+ f(m) divides f(n) + nf(m)

for all m,n ∈ N. (Albania)

4. There are n > 2 students sitting at a round table. Initially each student has exactly
one candy. At each step, each student chooses one of the following operations:

(i) Pass one candy to the student on their left or the student on their right.

(ii) Divide all their candies into two, possibly empty, sets and pass one set to the
student on their left and the other to the student on their right.

At each step the students perform their chosen operations simultaneously. An
arrangement of candies is legal if it can be obtained in a finite number of steps.
Find the number of legal arrangements.

(Two arrangements are different if there is a student who has different numbers of
candies in each one.) (Cyprus)

Time allowed: 270 minutes.
Each problem is worth 10 points.
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SOLUTIONS

1. Let x = dx1 and y = dy1, where d = (x, y). The given equation rewrites as

d(x1 + y1)(x
2
1 − x1y1 + y21) = x2

1 − x1y1 + y21 + 43x1y1, (∗)
which implies that x2

1 − x1y1 + y21 | 43x1y1. Since (x1, x
2
1 − x1y1 + y21) = (y1, x

2
1 −

x1y1+y21) = (x1, y1) = 1, it follows that x2
1−x1y1+y21 | 43. Note that x2

1−x1y1+
y21 > 0.

If x2
1 − x1y1 + y21 = 1, we must have x1 = y1 = 1, so (∗) yields x = y = d = 22.

The other possibility is x2
1−x1y1+y21 = 43, i.e. (2x1−y1)

2+3y21 = 172. Assuming
w.l.o.g. that x1 6 y1, we get 3y21 6 172 6 4y21 , which holds only for y1 = 7. Then
x1 = 1 and d = 1, or x1 = 6 and d = 43

13
. Only the first possibility gives a solution:

(x, y) = (1, 7).

Thus, the solutions (x, y) are pairs (1, 7), (7, 1) and (22, 22).

2. Denote AC = b and AB = c. Since ∢BTA = ∢BDC = 180◦ − ∢DCA = ∢ABC,
triangles ATB and ABC are similar,

and hence AT
AB

= AB
AC

, i.e. AT = c2

b
and

TC = b−AT = b2−c2

b . We similarly get

AS = b2

c and SB = b2−c2

c .

On the other hand, line AL is a symme-
dian in triangle ABC, so it meets side

BC at point K with BK
KC

= c2

b2
. There-

A B

C

D

E

K
L

S

T

fore
−→
AS−→
SB

·
−−→
BK−−→
KC

·
−→
CT−→
TA

= b2

c2−b2
· c2

b2
· b2−c2

c2
= −1 and by Menelaus’ theorem point K lies

on line ST .

3. The problem condition gives us n+f(m) | f(n)+nf(m)−n(n+f(m)) = f(n)−n2.
Setting m = n = 1 yields f(1) + 1 | f(1)− 1 and hence f(1) = 1.

Function f(x) ≡ x2 satisfies the conditions. Suppose that f(n0) 6= n2
0 for some n0.

Then from n0 + f(m) | |f(n0)− n2
0| it follows that f(m) 6 A = |f(n0)− n2

0| − n0.
On the other hand, the problem condition for m = 1 yields n + 1 | f(n) + n, i.e.
f(n) ≡ 1 (mod n), but f(n) < A+ 1, so we must have f(n) = 1 for all n > A.

Finally, for each n > A it holds that n+f(m) | f(m)(n+f(m))−(f(n)+nf(m)) =
f(m)2 − 1, so f(m) = 1 for all m ∈ N, which is also a solution.

Therefore, the only solutions are functions f(x) ≡ x2 and f(x) ≡ 1.

4. We start by noting that the number of all arrangements is
(
2n−1

n

)
.
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Lemma. In two steps, any student can pass a candy (assuming he has one) to the
student sitting two places to the left or right, so that the numbers of candies
at other students do not change.

Proof. Consider three adjacent students A, B and C left-to-right, with A having
at least one candy. Let all students perform operations of type (ii). Then
each candy arbitrarily moves one place left or right. Thus, in the first step all
candies can be moved right, and in the second step all candies can be moved
back left, except for one at student B who will pass it right to C. In this
way, one of the A’s candies is now at C. The other direction is analogous. 2

Assume n is odd. Since the distance between any two students is either clockwise
or counterclockwise even, each student can repeatedly use the Lemma to send a
candy to any other student in an even number of steps. Thus all arrangements are
legal.

Now assume n is even. After every step, the students on even positions have at
least one candy in total, and so do those on odd positions. Thus the 2

(
3n/2−1

n

)

arrangements in which all candies are on odd positions or all on even ones are
illegal. It remains to show that all other arrangements are legal.

By the Lemma, it suffices to show that, for each a = 1, 2, . . . , n− 1, we can obtain
at least one arrangement with exactly a candies on even positions. We start by
using the Lemma to send all candies to two adjacent students A and B, with A on
an even position. Suppose w.l.o.g. that, at this point, A has a′ > a candies. In the
first step, A passes a candy to B, and B passes a candy to his other neighbor C.
In the second step, A and B exchange a candy, whereas C gives his candy back to
B. Now A has a′ − 1 candy, and B has the remaining n − a′ + 1. Repeating this
procedure a′ − a times we reach a desired arrangement.

Therefore, the number of legal arrangements is
(
2n−1

n

)
for 2 ∤ n, and

(
2n−1

n

)
−

2
(
3n/2−1

n

)
for 2 | n.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Mathematical Society of Serbia

welcomes you

to the

35-th Balkan Mathematical Olympiad

to be held

in Serbia in May 2018

(the exact location and dates to be announced)
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