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Problems

Algebra
Let ay,aso, ..., ay,, k, and M be positive integers such that

1
—+—+-+—=Fk and aay...a, = M.
aq a9 (7%

If M > 1, prove that the polynomial
Px)=Mx+1fF —(z+a)(z+a) (v +ay)

has no positive roots.
(Trinidad and Tobago)

Let ¢ be a real number. Gugu has a napkin with ten distinct real numbers written
on it, and he writes the following three lines of real numbers on the blackboard:

e In the first line, Gugu writes down every number of the form a — b, where a and b are two
(not necessarily distinct) numbers on his napkin.

e In the second line, Gugu writes down every number of the form gab, where a and b are
two (not necessarily distinct) numbers from the first line.

2

e In the third line, Gugu writes down every number of the form a? + v*> — ¢ — d?, where

a,b, c,d are four (not necessarily distinct) numbers from the first line.

Determine all values of ¢ such that, regardless of the numbers on Gugu’s napkin, every
number in the second line is also a number in the third line.

(Austria)

Let S be a finite set, and let A be the set of all functions from S to S. Let f be an
element of A, and let "= f(.S) be the image of S under f. Suppose that fogo f#go fog
for every g in A with g # f. Show that f(T) =T.

A sequence of real numbers aq, as, ... satisfies the relation

a, = — max (a; + a;) for all n > 2017.
1+)=n

(India)

Prove that this sequence is bounded, i.e., there is a constant M such that |a,| < M for all
positive integers n.

(Russia)
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An integer n > 3 is given. We call an n-tuple of real numbers (xy, za,...,x,) Shiny

if for each permutation yy, s, ..., ¥y, of these numbers we have
n—1
Z Yilhier = Y1Y2 + Yoys + ysya + -+ Ynoayn = —1.
i=1

Find the largest constant K = K(n) such that

Z .I‘Z'ZL‘]‘ 2 K

1<i<j<n

holds for every Shiny n-tuple (z1, o, ..., z,).

(Serbia)
Find all functions f: R — R such that
f(f@)f(y) + flz+y) = f(ay)
for all z,y € R.
(Albania)

Let ag, a1, as, ... be a sequence of integers and by, by, bs, ... be a sequence of positive
integers such that ag = 0,a; = 1, and

forn=12,...

anbn + an—1, if bn—l =1
Ap41 = .
anb, — ap_1, ifb,_1>1

Prove that at least one of the two numbers as17 and asg1s must be greater than or equal to 2017.
(Australia)

Assume that a function f: R — R satisfies the following condition:
For every x,y € R such that (f(z)+y)(f(y) +a) > 0, we have f(z)+y = f(y)+=.

Prove that f(z) +y < f(y) + = whenever x > y.
(Netherlands)
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Combinatorics

A rectangle R with odd integer side lengths is divided into small rectangles with integer
side lengths. Prove that there is at least one among the small rectangles whose distances from
the four sides of R are either all odd or all even.

(Singapore)

Let n be a positive integer. Define a chameleon to be any sequence of 3n letters, with
exactly n occurrences of each of the letters a, b, and c. Define a swap to be the transposition of
two adjacent letters in a chameleon. Prove that for any chameleon X, there exists a chameleon Y

such that X cannot be changed to Y using fewer than 3n?/2 swaps.
(Australia)

Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In
each move, Sir Alex is allowed to perform exactly one of the following two operations:

(1) Choose any number of the form 27, where j is a non-negative integer, and put it into an
empty cell.

(2) Choose two (not necessarily adjacent) cells with the same number in them; denote that
number by 2. Replace the number in one of the cells with 27! and erase the number in
the other cell.

At the end of the game, one cell contains the number 2", where n is a given positive integer,
while the other cells are empty. Determine the maximum number of moves that Sir Alex could
have made, in terms of n.

(Thailand)

Let N > 2 be an integer. N(N + 1) soccer players, no two of the same height, stand
in a row in some order. Coach Ralph wants to remove N (N — 1) people from this row so that
in the remaining row of 2N players, no one stands between the two tallest ones, no one stands
between the third and the fourth tallest ones, ..., and finally no one stands between the two

shortest ones. Show that this is always possible.
(Russia)

A hunter and an invisible rabbit play a game in the Euclidean plane. The hunter’s
starting point Hj coincides with the rabbit’s starting point Ry. In the n'" round of the game
(n = 1), the following happens.

(1) First the invisible rabbit moves secretly and unobserved from its current point R, ; to
some new point R, with R, R, = 1.

(2) The hunter has a tracking device (e.g. dog) that returns an approximate position R], of
the rabbit, so that R, R], < 1.

(3) The hunter then visibly moves from point H, ; to a new point H, with H, H, = 1.

Is there a strategy for the hunter that guarantees that after 10 such rounds the distance
between the hunter and the rabbit is below 1007

(Austria)
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C6. Let n > 1 be an integer. An n x n x n cube is composed of n? unit cubes. Each
unit cube is painted with one color. For each n x n x 1 box consisting of n? unit cubes (of any
of the three possible orientations), we consider the set of the colors present in that box (each
color is listed only once). This way, we get 3n sets of colors, split into three groups according
to the orientation. It happens that for every set in any group, the same set appears in both
of the other groups. Determine, in terms of n, the maximal possible number of colors that are

present.
(Russia)

For any finite sets X and Y of positive integers, denote by fx (k) the k'"smallest
positive integer not in X, and let

X*Y=Xu{fx(y):yeY}.

Let A be a set of a > 0 positive integers, and let B be a set of b > 0 positive integers. Prove
that if A« B = B=x A, then

A*(A*---*(A*(A*A))...Z=?*(B*~~*(B*(B*B))...).

" J

~
A appears b times B appears a times

(U.S.A.)

C8. Let n be a given positive integer. In the Cartesian plane, each lattice point
with nonnegative coordinates initially contains a butterfly, and there are no other butter-
flies. The neighborhood of a lattice point ¢ consists of all lattice points within the axis-aligned
(2n+1) x (2n+ 1) square centered at ¢, apart from c itself. We call a butterfly lonely, crowded,
or comfortable, depending on whether the number of butterflies in its neighborhood N is re-
spectively less than, greater than, or equal to half of the number of lattice points in V.

Every minute, all lonely butterflies fly away simultaneously. This process goes on for as
long as there are any lonely butterflies. Assuming that the process eventually stops, determine

the number of comfortable butterflies at the final state.
(Bulgaria)
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Geometry

Let ABCDFE be a convex pentagon such that AB = BC = CD, /FAB = /ZBCD,
and ZEDC = ZCBA. Prove that the perpendicular line from E to BC and the line seg-
ments AC' and BD are concurrent.

(Ttaly)

Let R and S be distinct points on circle €2, and let ¢ denote the tangent line to €2
at R. Point R’ is the reflection of R with respect to S. A point [ is chosen on the smaller arc
RS of 2 so that the circumcircle ' of triangle ISR’ intersects t at two different points. Denote
by A the common point of I" and ¢ that is closest to R. Line AI meets () again at J. Show
that JR' is tangent to I.

(Luzembourg)

Let O be the circumcenter of an acute scalene triangle ABC. Line OA intersects the
altitudes of ABC' through B and C at P and @), respectively. The altitudes meet at H. Prove

that the circumcenter of triangle PQH lies on a median of triangle ABC'.
(Ukraine)

In triangle ABC, let w be the excircle opposite A. Let D, E, and F be the points

where w is tangent to lines BC, C'A, and AB, respectively. The circle AEF intersects line BC

at P and Q). Let M be the midpoint of AD. Prove that the circle M PQ is tangent to w.
(Denmark)

Let ABCC B;A; be a convex hexagon such that AB = BC, and suppose that the
line segments AA,, BB;, and C'C; have the same perpendicular bisector. Let the diagonals
AC; and A;C meet at D, and denote by w the circle ABC'. Let w intersect the circle A; BC;
again at F/ # B. Prove that the lines BB, and DFE intersect on w.

(Ukraine)

Let n > 3 be an integer. Two regular n-gons A and B are given in the plane. Prove
that the vertices of A that lie inside B or on its boundary are consecutive.
(That is, prove that there exists a line separating those vertices of A that lie inside B or on

its boundary from the other vertices of A.)
(Czech Republic)

A convex quadrilateral ABC'D has an inscribed circle with center I. Let I, I, I,
and I; be the incenters of the triangles DAB, ABC, BCD, and CDA, respectively. Suppose
that the common external tangents of the circles Al,I; and C'I,I; meet at X, and the common
external tangents of the circles BI,I. and DI,I. meet at Y. Prove that Z XY = 90°.
(Kazakhstan)

There are 2017 mutually external circles drawn on a blackboard, such that no two
are tangent and no three share a common tangent. A tangent segment is a line segment that
is a common tangent to two circles, starting at one tangent point and ending at the other one.
Luciano is drawing tangent segments on the blackboard, one at a time, so that no tangent
segment intersects any other circles or previously drawn tangent segments. Luciano keeps
drawing tangent segments until no more can be drawn. Find all possible numbers of tangent

segments when he stops drawing.
(Australia)
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Number Theory
The sequence ag, ay, as, ... of positive integers satisfies
{q/an, if \/a, is an integer

Ap41 =

) for every n = 0.
a, + 3, otherwise

Determine all values of ag > 1 for which there is at least one number a such that a, = a for

infinitely many values of n.
(South Africa)

Let p = 2 be a prime number. Eduardo and Fernando play the following game making
moves alternately: in each move, the current player chooses an index i in the set {0,1,...,p—1}
that was not chosen before by either of the two players and then chooses an element a; of the
set {0,1,2,3,4,5,6,7,8,9}. Eduardo has the first move. The game ends after all the indices

i€{0,1,...,p— 1} have been chosen. Then the following number is computed:
p—1
M=ag+10-a+ -+ 10" a, = Y a;- 107,
j=0

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to
prevent this.

Prove that Eduardo has a winning strategy.
(Morocco)

Determine all integers n > 2 with the following property: for any integers ay, as, ..., a,
whose sum is not divisible by n, there exists an index 1 < ¢ < n such that none of the numbers

Ajy Gy + Aig 1y -5 0 + Qg1+ 00+ Qi1

is divisible by n. (We let a; = a;_,, when i > n.)
(Thailand)

N4. Call a rational number short if it has finitely many digits in its decimal expansion.
For a positive integer m, we say that a positive integer t is m-tastic if there exists a number
1 t k
ce{1,2,3,...,2017} such that
c-m m

— s short, and such that —
C .
1 <k <t. Let S(m) be the set of m-tastic numbers. Consider S(m) for m = 1,2,.... What is
the maximum number of elements in S(m)?

is not short for any

(Turkey)
Find all pairs (p, q) of prime numbers with p > ¢ for which the number

(p+ g (p—g)P -1
(p+q)P~2p—qprti—1

is an integer.

(Japan)
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Find the smallest positive integer n, or show that no such n exists, with the following
property: there are infinitely many distinct n-tuples of positive rational numbers (aq, as, . . ., a,)
such that both

ay +as + -+ a, and —+ =+t —

are integers.
(Singapore)

N7. Say that an ordered pair (x,y) of integers is an irreducible lattice point if x and
y are relatively prime. For any finite set S of irreducible lattice points, show that there is a
homogenous polynomial in two variables, f(x,y), with integer coefficients, of degree at least 1,
such that f(z,y) = 1 for each (z,y) in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

f(z,y) = apx™ + a 2" 'y + agx" Py? + -+ a2y + any™

(U.S.A.)

Let p be an odd prime number and Z- be the set of positive integers. Suppose that
a function f: Z-g x Z=o — {0, 1} satisfies the following properties:

e f(1,1) =0;
e f(a,b)+ f(b,a) =1 for any pair of relatively prime positive integers (a, b) not both equal
to 1;

e f(a+0b,b) = f(a,b) for any pair of relatively prime positive integers (a, b).

Prove that .
o
D0’ p) = /2p -2
n=1

(Italy)
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Solutions

Algebra

Let a1, as, ..., a,, k, and M be positive integers such that

1 1 1
—+ —+--+—=%k and aay...a, =M.
aq (05} (7%

If M > 1, prove that the polynomial
Pla)=M(z+1)"—(z4+a)(z+a) (x4 ap)

has no positive roots.
(Trinidad and Tobago)

Solution 1. We first prove that, for x > 0,
ai(z + )Y < o+ ay, (1)

with equality if and only if a; = 1. It is clear that equality occurs if a; = 1.
If a; > 1, the AM—GM inequality applied to a single copy of z + 1 and a; — 1 copies of 1
yields
a;—1 ones
/_/%
(x+1)+1+1+---+1

> /(z+1)- 1977 = ae+ )" <z +a
Q;

Since x + 1 > 1, the inequality is strict for a; > 1.
Multiplying the inequalities (1) for i = 1,2,...,n yields

Hai(az + 1) < H(az +a;) — Mz +1)Z= Y H(:c +a;) <0 < P(z)<0

i=1 i=1 i=1

with equality iff a; = 1 for all ¢ € {1,2,...,n}. But this implies M = 1, which is not possible.
Hence P(z) < 0 for all z € R*, and P has no positive roots.

Comment 1. Inequality (1) can be obtained in several ways. For instance, we may also use the
binomial theorem: since a; > 1,

a; a; J
x a; x a; a;\
() =5 () @) = 6) () s
a; , j a; 0 1 a;
7=0
Both proofs of (1) mimic proofs to Bernoulli’s inequality for a positive integer exponent a;; we can
use this inequality directly:

a;

z T

<1—|——> z21l+a;-—=1+2x,
a; a;

and so

x :
r+a; =aq <1+ —) > a;(1 + )Y,
ai

or its (reversed) formulation, with exponent 1/a; < 1:

1 .
(L4z)/s 14— gp= 210

= aq;(1+ x)l/‘” <z + a;.
a; a;
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Solution 2. We will prove that, in fact, all coefficients of the polynomial P(x) are non-positive,
and at least one of them is negative, which implies that P(z) < 0 for z > 0.

Indeed, since a; > 1 for all j and a; > 1 for some j (since ajay...a, = M > 1), we have
k=L+L14.. 4 i < n, so the coefficient of 2™ in P(x) is —1 < 0. Moreover, the coefficient
of 27 in P(x) is negative for k <r < n = deg(P).

For 0 < r < k, the coefficient of 2" in P(x) is

k k
M-\ ) - > iy Gy~ iy = 0y () = > Ay Qi ™+ * Qi

1<ii<io<-<ip—r<n 1<ii<io<-<ip—r<n

which is non-positive iff
k 1
< < 0y L (2)
"/ i<ji<jam<jesn % T Ay

We will prove (2) by induction on r. For r = 0 it is an equality because the constant term of
P(x)is P(0) =0, and if r = 1, (2) becomes k = >, a% For r > 1, if (2) is true for a given
r < k, we have

k k—r (k k—r 1
e A [y S o
r+1 r+1 \r r+1 Ay Ajy * * A,

1<j1<jo<-<jr<n J1%52

and it suffices to prove that

k—r 1 1
s D e S

Y
1<j1<jo<-<jr<n 1772 r 1<j1 < <jr<jrai1<n J177J2 JrWiry1

which is equivalent to

1 1 1 1 1
el — < 1
<a1+a2+ +an T) Z Qs (T+ ) Z

a;, a;, - A @y QA
1<ji1<jo<-<jr<n J1 7702 Ir 1<j1<<jr<jry1<n J17J2 JrIr+1

Since there are r + 1 ways to choose a fraction - from L
aj; Ajq Ao A Ay q
T
1

Aj1 Ajg A Xy g

to factor out, every

term in the right hand side appears exactly » 4+ 1 times in the product

1 1 1 1
— = — Z S —
ap a (7% 1<j1<jos-<jr<n Qg Ajy - Ay,

Hence all terms in the right hand side cancel out.
The remaining terms in the left hand side can be grouped in sums of the type

1 1 1 r
5 _|_ 5 _l’_ ce _|_ 3 —
aj,Q5y -+ A, A5 A%, A, Aji Qg+ + - A5 Ay A = -~ A,
1 1 1 1
- —+—++— =1,
Ajy Ay * = A \ gy Gy @y
which are all non-positive because a; > 1 = ai <l,:1=12,...,n
Comment 2. The result is valid for any real numbers a;, ¢ = 1,2,...,n with a; > 1 and product M

greater than 1. A variation of Solution 1, namely using weighted AM-GM (or the Bernoulli inequality
for real exponents), actually proves that P(z) <0 for z > —1 and = # 0.
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Let ¢ be a real number. Gugu has a napkin with ten distinct real numbers written on
it, and he writes the following three lines of real numbers on the blackboard:

e In the first line, Gugu writes down every number of the form a — b, where a and b are two
(not necessarily distinct) numbers on his napkin.

e In the second line, Gugu writes down every number of the form gab, where a and b are
two (not necessarily distinct) numbers from the first line.

2

e In the third line, Gugu writes down every number of the form a® + b* — ¢ — d?, where

a,b, c,d are four (not necessarily distinct) numbers from the first line.

Determine all values of ¢ such that, regardless of the numbers on Gugu’s napkin, every
number in the second line is also a number in the third line.

(Austria)
Answer: —2,0, 2.

Solution 1. Call a number ¢ good if every number in the second line appears in the third line
unconditionally. We first show that the numbers 0 and +2 are good. The third line necessarily
contains 0, so 0 is good. For any two numbers a, b in the first line, write a = x—y and b = u—w,
where x,y, u,v are (not necessarily distinct) numbers on the napkin. We may now write

2ab = 2(z —y)(u—v) = (x —0)" + (y —w)* = (x —u)* = (y —v)*,

which shows that 2 is good. By negating both sides of the above equation, we also see that —2
is good.

We now show that —2,0, and 2 are the only good numbers. Assume for sake of contradiction
that ¢ is a good number, where ¢ ¢ {—2,0,2}. We now consider some particular choices of
numbers on Gugu’s napkin to arrive at a contradiction.

Assume that the napkin contains the integers 1,2,...,10. Then, the first line contains
the integers —9, —8,...,9. The second line then contains ¢ and 81¢, so the third line must
also contain both of them. But the third line only contains integers, so ¢ must be an integer.
Furthermore, the third line contains no number greater than 162 = 92 4+ 92 — 02 — 02 or less
than —162, so we must have —162 < 81¢ < 162. This shows that the only possibilities for ¢
are 1.

Now assume that ¢ = +1. Let the napkin contain 0,1,4,8,12,16, 20,24, 28, 32. The first
line contains +1 and +4, so the second line contains +4. However, for every number a in the
first line, a # 2 (mod 4), so we may conclude that a*> = 0,1 (mod 8). Consequently, every
number in the third line must be congruent to —2, —1,0,1,2 (mod 8); in particular, 4 cannot
be in the third line, which is a contradiction.

Solution 2. Let ¢ be a good number, as defined in the first solution, and define the polynomial

P(ZL‘l, e ,l‘lo) as

H(xl — ;) H (q(z1 — 22) (w3 — 34) — (a1 — a2)® — (a3 — as)® + (a5 — ag)* + (a7 — as)?),

1<j a;€S
where S = {x1,..., 210}

We claim that P(xq,...,219) = 0 for every choice of real numbers (x1,...,2z19). If any two
of the x; are equal, then P(xy,...,x19) = 0 trivially. If no two are equal, assume that Gugu
has those ten numbers z, ..., z19 on his napkin. Then, the number ¢(x; — x5)(x3 — z4) is in
the second line, so we must have some aq, ..., ag so that

q(z1 — 22) (23 — 14) — (a1 — a2)* — (ag — ay)? + (a5 — ag)® + (a7 — ag)? = 0,
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and hence P(zy,...,219) = 0.
Since every polynomial that evaluates to zero everywhere is the zero polynomial, and the
product of two nonzero polynomials is necessarily nonzero, we may define F' such that

F(zy,...,710) = q(a1 — 22) (23 — 24) — (a1 — a2)* — (a3 — a4)* + (a5 — ag)* + (a7 —ag)* =0 (1)

for some particular choice a; € S.

Each of the sets {ai, as}, {as, a4}, {as,as}, and {ar, as} is equal to at most one of the four
sets {x1, 3}, {2, x3}, {r1, x4}, and {xe,z4}. Thus, without loss of generality, we may assume
that at most one of the sets {aj,as}, {as, a4}, {as,ae}, and {a7,as} is equal to {z1,x3}. Let
u1,us, us, u7 be the indicator functions for this equality of sets: that is, u; = 1 if and only if
{a;,a;41} = {x1,x3}. By assumption, at least three of the u; are equal to 0.

We now compute the coefficient of z123 in F. It is equal to ¢ + 2(uy + uz — us — uy) = 0,
and since at least three of the u; are zero, we must have that ¢ € {—2,0, 2}, as desired.
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Let S be a finite set, and let A be the set of all functions from S to S. Let f be an
element of A, and let "= f(.S) be the image of S under f. Suppose that fogo f#go fog
for every g in A with g # f. Show that f(T) =T.

(India)

Solution. For n > 1, denote the n-th composition of f with itself by

JrE fofo o).
n times

By hypothesis, if g € A satisfies fogo f = go fog, then g = f. A natural idea is to try to
plug in g = f" for some n in the expression fogo f = go fogin order to get f* = f, which
solves the problem:
Claim. If there exists n > 3 such that f**? = f2"*! then the restriction f: T — T of f to T
is a bijection.
Proof. Indeed, by hypothesis, f"*? = f"*l «— foflof = ffofo f* = f" = f.
Since n — 2 > 1, the image of f"2 is contained in T = f(S), hence f"~2 restricts to a function
f72: T — T. This is the inverse of f: T — T. In fact, given t € T, say t = f(s) with s € S,
we have

t=f(s)=["(s) = ["2(f(1) = F(/"2(), Qe ["Pof=fof"P=idonT

(here id stands for the identity function). Hence, the restriction f: T'— T of f to T is bijective
with inverse given by " 2: T — T. O
It remains to show that n as in the claim exists. For that, define

S & f7(S) (S is image of ")

Clearly the image of f™*! is contained in the image of f™, i.e., there is a descending chain of
subsets of S
S251252585282-,

which must eventually stabilise since S is finite, i.e., there is a k£ > 1 such that
def

Hence f restricts to a surjective function f: Sy, — S,,, which is also bijective since S, < S is
finite. To sum up, f: Syx — Sy is a permutation of the elements of the finite set S, hence
there exists an integer r > 1 such that f” =id on S, (for example, we may choose r = [Sy|!).

In other words,
fmr = f™on S for all m > k. (*)

Clearly, (=) also implies that f™*" = f™ for all integers ¢t > 1 and m > k. So, to find n as in
the claim and finish the problem, it is enough to choose m and ¢ in order to ensure that there
exists n > 3 satisfying

{2n+1=m+tr {m=3+tr
—

n+2=m n=m—2.

This can be clearly done by choosing m large enough with m = 3 (mod r). For instance, we
may take n = 2kr + 1, so that

fn+2 _ f2k7"+3 _ f4k7"+3 _ f2n+1

where the middle equality follows by (x) since 2kr + 3 > k.
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A sequence of real numbers aq, as, ... satisfies the relation

a, = — max (a; + a;) for all n > 2017.
1+)=n

Prove that this sequence is bounded, i.e., there is a constant M such that |a,| < M for all
positive integers n.

(Russia)
Solution 1. Set D = 2017. Denote

M,, = max ay and my, = —min a, = max(—ag).
k<n k<n k<n

Clearly, the sequences (m,) and (M,) are nondecreasing. We need to prove that both are
bounded.

Consider an arbitrary n > D; our first aim is to bound a,, in terms of m,, and M,,.

(i) There exist indices p and ¢ such that a,, = —(a, + a,) and p + ¢ = n. Since a,, a, < M, we
have a,, > —2M,,.

(ii) On the other hand, choose an index k < n such that ay = M,. Then, we have

ay = — I?ax(an,g +ap) < —(ap_p + ag) = —ay_p — M, <m, — M,.
<n

Summarizing (i) and (ii), we get
—2M, < a, < m, — M,,
whence

My < My < maxi{m,,2M,} and M, < M, < max{M,,m, — M,}. (1)

Now, say that an index n > D is lucky if m,, < 2M,,. Two cases are possible.
Case 1. Assume that there exists a lucky index n. In this case, (1) yields m,,; < 2M, and
M, < M,y < M,. Therefore, M, ,; = M, and m,,, < 2M, = 2M, 1. So, the index n + 1
is also lucky, and M, 1 = M,. Applying the same arguments repeatedly, we obtain that all

indices k > n are lucky (i.e., my < 2Mj, for all these indices), and My, = M,, for all such indices.
Thus, all of the m,;, and M, are bounded by 2M,,.

Case 2. Assume now that there is no lucky index, i.e., 2M,, < m,, for all n > D. Then (1)
shows that for all n > D we have m,, < m,1 < m,, so m, = mp,1 for all n > D. Since
M,, < m,/2 for all such indices, all of the m,, and M,, are bounded by mp,;.

Thus, in both cases the sequences (m,,) and (M,,) are bounded, as desired.

Solution 2. As in the previous solution, let D = 2017. If the sequence is bounded above, say,

by @, then we have that a, > min{ay,...,ap, —2Q} for all n, so the sequence is bounded. As-
sume for sake of contradiction that the sequence is not bounded above. Let £ = min{ay,...,ap},
and L = max{ay,...,ap}. Call an index n good if the following criteria hold:

a, > a; foreachi<n, a,>—-2¢, and n>2D (2)

We first show that there must be some good index n. By assumption, we may take an
index N such that ay > max{L, —2¢}. Choose n minimally such that a,, = max{a, as,...,ay}.
Now, the first condition in (2) is satisfied because of the minimality of n, and the second and
third conditions are satisfied because a,, > ay > L,—2¢, and L > a; for every ¢ such that
1<i1<D.
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Let n be a good index. We derive a contradiction. We have that
ap + ay + a, <0, (3)

whenever v + v = n.

We define the index u to maximize a, over 1 < u <n—1, and let v = n—u. Then, we note
that a, > a, by the maximality of a,.

Assume first that v < D. Then, we have that

ay + 20 < 0,
because a, > a, = f. But this contradicts our assumption that a,, > —2¢ in the second criteria
of (2).
Now assume that v > D. Then, there exist some indices wy, w, summing up to v such that
Qy + Gy + Ay, = 0.
But combining this with (3), we have

Ay + Gy < Aoy T Qo -

Because a,, > a,, we have that max{a,,, a.,} > a,. But since each of the wj is less than v, this
contradicts the maximality of a,.

Comment 1. We present two harder versions of this problem below.

Version 1. Let ai,as,... be a sequence of numbers that satisfies the relation
anp = — max (a; +a;j + ay) for all n > 2017.
i+j+k=n

Then, this sequence is bounded.
Proof. Set D = 2017. Denote

M,, = max ay, and my, = —mina, = max(—ay).
k<n k<n k<n

Clearly, the sequences (m,,) and (M,,) are nondecreasing. We need to prove that both are bounded.
Consider an arbitrary n > 2D; our first aim is to bound a,, in terms of m; and M;. Set k = |n/2|.

i) Choose indices p, g, and r such that a, = —(a, + a4 + a,) and p + ¢ + r = n. Without loss of
P q
generality, p = q¢ > r.
Assume that p = k + 1(> D); then p > ¢ + r. Hence

—ap, = max (aj, + G, + Aiy) = ag + ar + ap_g—r,
11+12+13=p
and therefore a,, = —(ap +aq + a,) = (ag + ar + ap_g—r) — g — @p = Qp_gq—y = —My.

Otherwise, we have k > p > ¢ > r. Since n < 3k, we have r < k. Then a,,a, < Mj;1 and
a, < My, whence a,, = —2M}. 1 — M.

Thus, in any case a,, = — max{my,, 2My+1 + My}.
(ii) On the other hand, choose p < k and ¢ < k—1 such that a, = Mj4, and ag = Mj. Thenp+q <n,
S0 ap, < —(ap + ag + an—p—q) = —Gp—p—q — Mi41 — My, < my, — My — M.

To summarize,

—max{my,, 2My1 + My} < ap, < my — My — My,

whence

My < My < max{my, 2My 1 + My} and M, < My < max{M,,m, — M1 — My}. (4)
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Now, say that an index n > 2D is lucky if m;, < 2M|, 2141 + M|p/2). Two cases are possible.

Case 1. Assume that there exists a lucky index n; set k& = |[n/2]|. In this case, (4) yields my,41 <
2My1 + My, and M,, < M1 < M, (the last relation holds, since m, — My,1 — My < (2Mj1 +
M) — My — My, = My < M,,). Therefore, M, 11 = M,, and my1 < 2Mj 1 + My; the last relation
shows that the index n + 1 is also lucky.

Thus, all indices N > n are lucky, and My = M, > my/3, whence all the my and My are
bounded by 3M,,.

Case 2. Conversely, assume that there is no lucky index, i.e., 2M|,, )11 + M|, /2] < my, for all n > 2D.
Then (4) shows that for all n > 2D we have m,, < my41 < my, i.e., my = map41 for all N > 2D.
Since My < mapn+1/3 for all such indices, all the my and My are bounded by map1.

Thus, in both cases the sequences (m,,) and (M,,) are bounded, as desired. ]
Version 2. Let aq,as,... be a sequence of numbers that satisfies the relation
ap=—_ max (aj +- - +aj) for all n > 2017.

i1+ tig=n

Then, this sequence is bounded.

Proof. As in the solutions above, let D = 2017. If the sequence is bounded above, say, by @, then we
have that a,, > min{aq,...,ap, —kQ@} for all n, so the sequence is bounded. Assume for sake of contra-
diction that the sequence is not bounded above. Let ¢ = min{as,...,ap}, and L = max{ay,...,ap}.
Call an index n good if the following criteria hold:

a, > a; foreach i <n, a,>—kf,b, and n>D (5)

We first show that there must be some good index n. By assumption, we may take an index N
such that ay > max{L, —k¢}. Choose n minimally such that a,, = max{aj,as,...,an}. Now, the first
condition is satisfied because of the minimality of n, and the second and third conditions are satisfied
because a,, = ay > L,—k{, and L > a; for every i such that 1 <i < D.

Let n be a good index. We derive a contradiction. We have that

Ap + Gy + -+ Gy, <0, (6)

whenever vy + --- + v = n.

We define the sequence of indices vy,...,v;—1 to greedily maximize a,,, then a,,, and so forth,
selecting only from indices such that the equation v; + - - -+ v; = n can be satisfied by positive integers
V1,...,V. More formally, we define them inductively so that the following criteria are satisfied by
the (U

1. 1< <n—(kz—z’)—(v1+---+vi,1).
2. a,, is maximal among all choices of v; from the first criteria.
First of all, we note that for each i, the first criteria is always satisfiable by some v;, because we

are guaranteed that
vir<n—(k—(0G—1))—(v1+ - +vi_2),
which implies
1 <TL*(1€*Z')*(’L)1+---+’UZ',1).
Secondly, the sum vy + -+ 4+ vg_1 is at most n — 1. Define vy = n — (v + -+ + vg_1). Then, (6)
is satisfied by the v;. We also note that a,;, > a,,; for all i < j; otherwise, in the definition of v;, we

could have selected v; instead.
Assume first that vy < D. Then, from (6), we have that

an + k£ <0,

by using that a,, = --- > a,, > ¢. But this contradicts our assumption that a, > —kf in the second
criteria of (5).
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Now assume that v > D, and then we must have some indices w1, ..., w; summing up to vg such
that
Ay, + Ay + -+ + Gy, = 0.

But combining this with (6), we have

Ap + Gy F o+ Ay S Aoy + -+ Qg -

Because a,, > a,, > -+ = a,,_,, we have that max{ay,,...,ay,} > a,,_,. But since each of the w;
is less than vy, in the definition of the vy_; we could have chosen one of the w; instead, which is a
contradiction. ]

Comment 2. It seems that each sequence satisfying the condition in Version 2 is eventually periodic,
at least when its terms are integers.

However, up to this moment, the Problem Selection Committee is not aware of a proof for this fact
(even in the case k = 2).



Shortlisted problems — solutions 21

An integer n = 3 is given. We call an n-tuple of real numbers (x1, zs, ..., x,) Shiny if

for each permutation ¥, s, ..., 4, of these numbers we have
n—1
Z Yilfie1 = Y1Y2 + Yoy + Y3ya + -+ Yn1Yn = —1.
i=1

Find the largest constant K = K(n) such that

Z Ty = K

I<i<j<n

holds for every Shiny n-tuple (z1, o, ..., z,).
(Serbia)
Answer: K = —(n—1)/2.

Solution 1. First of all, we show that we may not take a larger constant K. Let ¢ be a positive
number, and take x5 = x3 = --- = ¢t and x; = —1/(2t). Then, every product z;z; (i # j) is
equal to either t? or —1/2. Hence, for every permutation y; of the z;, we have

Y1Yz + o Yuatn = (0= 382 —1 > 1.

This justifies that the n-tuple (x1,...,z,) is Shiny. Now, we have

n—1 (n-1)n-2),
;I‘Z‘SL’]’ = — 9 + 9 t-.
Thus, as ¢ approaches 0 from above, >}, . z;x; gets arbitrarily close to —(n —1)/2. This shows
that we may not take K any larger than —(n — 1)/2. It remains to show that ) _.x;z; >
—(n —1)/2 for any Shiny choice of the z;.

From now onward, assume that (zi,...,z,) is a Shiny n-tuple. Let the z; (1 < i < n) be
some permutation of the x; to be chosen later. The indices for z; will always be taken modulo n.
We will first split up the sum », _;@x; = >, _; 2% into [(n — 1)/2| expressions, each of the
form y1y2 + -+ + yp_1y, for some permutation y; of the z;, and some leftover terms. More
specifically, write

i<j

Zzizj = 2 Z ZiZj = Z 2 zizj + L, (1)

1<j q=0 i+j=q (mod n) p=1 i+j=2p—12p (mod n)
1#j (mod n) i#j (mod n)

where L = z12_1 + 2020 + - + Z(m—1)22—@m—1)y2 if nis odd, and L = 2121 + 2122 + 225 +
o+ Z(n—2)/2%-n/2 if n is even. We note that for each p = 1,2,...,|(n — 1)/2], there is some
permutation y; of the z; such that

n—1
2 2z = 2 YrYk+1,
k=1

i1+j=2p—1,2p (mod n)
i#j (mod n)

because we may choose ya; 1 = 241 for 1 <i < (n+1)/2 and yy = z,; for 1 < i < n/2.

We show (1) graphically for n = 6,7 in the diagrams below. The edges of the graphs each
represent a product z;2;, and the dashed and dotted series of lines represents the sum of the
edges, which is of the form yyys + - - - + ¥,,_1y, for some permutation y; of the z; precisely when
the series of lines is a Hamiltonian path. The filled edges represent the summands of L.
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Now, because the z; are Shiny, we have that (1) yields the following bound:

—1
ZZZZJ'?—{”Q J-FL

i<j

It remains to show that, for each n, there exists some permutation z; of the x; such that L > 0
when n is odd, and L > —1/2 when n is even. We now split into cases based on the parity of n
and provide constructions of the permutations z;.

Since we have not made any assumptions yet about the x;, we may now assume without
loss of generality that

T <2y < <2, <0< xp1 < - < 1y (2)

Case 1: n is odd.

Without loss of generality, assume that k& (from (2)) is even, because we may negate all
the x; if k£ is odd. We then have 129, 2324, ...,2,_27,_1 = 0 because the factors are of the
same sign. Let L = x1w9 + 2304 + - + T,_ox,_1 = 0. We choose our z; so that this definition
of L agrees with the sum of the leftover terms in (1). Relabel the x; as z; such that

{2’1, Zn—l}a {22, Zn—z}, cey {Z(n—1)/2, Z(n+1)/2}
are some permutation of
{1’17 372}7 {1’37 374}, ) {$n727 $n71}7
and z, = x,. Then, we have L = 212,_1 + -+ + 2(n_1)/22(n+1)/2, as desired.

Case 2: n s even.

Let L = x1x9 + 2223+ -+ -+ T 12,. Assume without loss of generality & # 1. Now, we have
2L = (v10p + -+ Tpo1Wy) + (2122 + -+ Tp1Tp) = (D203 + - A Ty 17) + TpThg

= XoX3 + -+ Tpo 1Ty + Ty = —1,

where the first inequality holds because the only negative term in L is xpxp,1, the second
inequality holds because r; < xp < 0 < 241 < x,, and the third inequality holds because
the x; are assumed to be Shiny. We thus have that L > —1/2. We now choose a suitable z;
such that the definition of L matches the leftover terms in (1).



Shortlisted problems — solutions 23

Relabel the x; with z; in the following manner: x9; 1 = z_;, x9; = z; (again taking indices
modulo n). We have that
L = Z ZZ‘Zj,

i+7j=0,—1 (mod n)
i#j (mod n)

as desired.

Solution 2. We present another proof that >, _; x;z; > —(n —1)/2 for any Shiny n-tuple
(1,...,2,). Assume an ordering of the x; as in (2), and let £ = n — k. Assume without loss
of generality that k& > /. Also assume k # n, (as otherwise, all of the x; are nonpositive, and
so the inequality is trivial). Define the sets of indices S = {1,2,... k} and T = {k+ 1,...,n}.
Define the following sums:

K= Z riwj, M= inxj, and L = Z ;T

1<j €8 1<j
i,j€S JeT i,j€T

By definition, K, L > 0 and M < 0. We aim to show that K + L + M > —(n —1)/2.

We split into cases based on whether k = ¢ or k > /.
Case 1: k> (.

Consider all permutations ¢: {1,2,...,n} — {1,2,...,n} such that ¢~ 1(T) = {2,4,...,2(}.
Note that there are k!f! such permutations ¢. Define

n—1
¢) = Z Tp(i)Tp(i+1)-
=1

We know that f(¢) = —1 for every permutation ¢ with the above property. Averaging f(¢)

over all ¢ gives
1 20 2(k—¢—-1)
<W!§f(¢)_k7M+ Ko1)o

where the equality holds because there are k¢ products in M, of which 2¢ are selected for each ¢,
and there are k(k — 1)/2 products in K, of which k — ¢ — 1 are selected for each ¢. We now
have

k k—(-1 k

14
K+L+M2>K+1L - —— K| =—+ —7-K+ L.
+ L+ + +( SR ) TR

Since k <n —1and K, L > 0, we get the desired inequality.
Case 2: k=10 =mn/2.

We do a similar approach, considering all ¢: {1,2,...,n} — {1,2,...,n} such that ¢~ *(T) =
{2,4,...,2¢}, and defining f the same way. Analogously to Case 1, we have

26—1
W'Zf - M,

because there are k¢ products in M, of which 2¢ — 1 are selected for each ¢. Now, we have that

n? n—1

K+L+M=M>— >t
T An—1) 2

where the last inequality holds because n > 4.
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Find all functions f: R — R such that
FF@) W)+ flz+y) = flzy) ()

for all z,y € R.
(Albania)

Answer: There are 3 solutions:

x—0 or r—x—1 or r—1—x (r e R).

Solution. An easy check shows that all the 3 above mentioned functions indeed satisfy the
original equation (x).

In order to show that these are the only solutions, first observe that if f(z) is a solution
then — f(z) is also a solution. Hence, without loss of generality we may (and will) assume that
f(0) < 0 from now on. We have to show that either f is identically zero or f(x) = z — 1
(Vz € R).

Observe that, for a fixed x # 1, we may choose y € R so that x +y = 2y < y =
and therefore from the original equation () we have

_x
r—17

@ f(===)) =0 @=. (1)

In particular, plugging in = 0 in (1), we conclude that f has at least one zero, namely (f(0)):

F((f(0))%) =o0. (2)
We analyze two cases (recall that f(0) < 0):
Case 1: f(0) = 0.

Setting y = 0 in the original equation we get the identically zero solution:

f(f(@)f(0)) + f(x) = f(0) = f(x) =0 for all z € R.

From now on, we work on the main

Case 2: f(0) <O.
We begin with the following

Claim 1.
f(1) =0, fla)=0 = a=1, and f(0) = —1. (3)

Proof. We need to show that 1 is the unique zero of f. First, observe that f has at least one
zero a by (2); if a # 1 then setting x = a in (1) we get f(0) = 0, a contradiction. Hence
from (2) we get (f(0))? = 1. Since we are assuming f(0) < 0, we conclude that f(0) = —1. []

Setting y = 1 in the original equation (x) we get

FU@) M)+ fe+1) = fx) <= fO)+f(z+]) = f(z) < [flz+1) = flz)+1  (zeR).
An easy induction shows that

flx+n)=f(z)+n (xeR, neZ). (4)
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Now we make the following
Claim 2. f is injective.
Proof. Suppose that f(a) = f(b) with a # b. Then by (4), for all N € Z,

fla+N+1)=f(b+N)+1.

Choose any integer N < —b; then there exist xg,yo € R with 29 +y9o =a+ N + 1, xoyg = b+ N.
Since a # b, we have zy # 1 and yy # 1. Plugging in 2 and yg in the original equation (*) we
get

F(F@) f(yo)) + fla+ N+1) = f(b+ N) < f(f(z0)f(yo)) +1=0
= [(f(20)f(po) +1) =0 by (4)
> f(x0)f(yo) =0 by (3).

However, by Claim 1 we have f(zq) # 0 and f(yo) # 0 since 2y # 1 and yy # 1, a contradiction.

O

Now the end is near. For any ¢ € R, plug in (z,y) = (¢, —t) in the original equation (x) to
get

FUF@F(=0) + f(0) = f(=t*) <= [(fO)f(=1) = f(=t*)+1 by (3)
— f(fO)f(=1) = f(=t*+1) by (4)
— f()f(—t)=—-t*+1 by injectivity of f.

Similarly, plugging in (x,y) = (¢,1 —t) in (*) we get
FUQFA =)+ fQ) = f(H(1 =) < [FOFA=1)) = f{E(L=1)) by (3)

But since f(1 —1¢) =1+ f(—t) by (4), we get

FOF1—0)=t0 1) = fOA+(-0) =1~ 1) = () + (2 +1)=t(1—1)
— fH) =11,

as desired.

Comment. Other approaches are possible. For instance, after Claim 1, we may define

(@) & f@) +1.
Replacing z + 1 and y + 1 in place of z and y in the original equation (x), we get
fPa+Dfly+1) +fe+y+2) = flay+z+y+1) (z,y €R),
and therefore, using (4) (so that in particular g(x) = f(x + 1)), we may rewrite (x) as
9(9(x)g(y)) + 9(x +y) = g(zy + = +y) (z,y € R). (%)

We are now to show that g(z) = x for all € R under the assumption (Claim 1) that 0 is the unique
zero of g.

Claim 3. Let n€ Z and z € R. Then

(a) g(z +n) =x + n, and the conditions g(x) = n and = n are equivalent.

(b) g(nz) = ng().
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Proof. For part (a), just note that g(x +n) = =+ n is just a reformulation of (4). Then g(z) =n <=
g(x —n) =0 <= x —n = 0 since 0 is the unique zero of g. For part (b), we may assume that x # 0
since the result is obvious when x = 0. Plug in y = n/z in (*x) and use part (a) to get

n

o(oo(2) o+ 2) =2+ 2) = aton(2)) =0 = stan(2) -

x

In other words, for z # 0 we have
n

g(n/z)
In particular, for n = 1, we get g(1/x) = 1/g(x), and therefore replacing = < nz in the last equation
we finally get

g(z) =

as required.

Claim 4. The function g is additive, i.e., g(a + b) = g(a) + g(b) for all a,b € R.
Proof. Set x « —z and y < —y in (*x*); since ¢ is an odd function (by Claim 3(b) with n = —1), we
get

9(g(x)9(y)) —9(z +y) = —g(-zy + 2 +y).

Subtracting the last relation from (%) we have
29(z +y) = glzy + x+y) + g(—zy + = +y)

and since by Claim 3(b) we have 2g(x + y) = ¢g(2(x + y)), we may rewrite the last equation as

B a=xy+x+y
gla+B) = g(a) +g(B)  where {ﬁ I

In other words, we have additivity for all a, 8 € R for which there are real numbers z and y satisfying

a—f
9 )

+
m—l—y:aQB and Ty =

i.e., for all a, 8 € R such that (#)2 —4. O‘T_B > 0. Therefore, given any a,b € R, we may choose n € Z
large enough so that we have additivity for & = na and 8 = nb, i.e.,

g(na) + g(nb) = g(na + nb) < ng(a) + ng(b) = ng(a + b)

by Claim 3(b). Cancelling n, we get the desired result. (Alternatively, setting either («, 5) = (a,b) or
(e, B) = (—a,—b) will ensure that (O‘TJFB)2 —4- O‘T_B = 0). 0

Now we may finish the solution. Set y = 1 in (*x), and use Claim 3 to get

9(9(x)g(1)) + gz +1) = g2z + 1) <= g(g(z)) +g(z) + 1 =2g9(z) +1 <= g(g9(z)) = g(x).

By additivity, this is equivalent to g(g(x) — ) = 0. Since 0 is the unique zero of g by assumption, we
finally get g(x) —2 =0 < g(z) = z for all z € R.
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Let ag,ay,as,... be a sequence of integers and by, by, by, ... be a sequence of positive
integers such that ag = 0,a; = 1, and

nbn+ n—1, fbn— =1
anH:{CL n-ty 1 ! forn=12,...

anb, — ap_1, ifb,_1>1

Prove that at least one of the two numbers as17 and asg1s must be greater than or equal to 2017.
(Australia)

Solution 1. The value of b, is irrelevant since ag = 0, so we may assume that by = 1.

Lemma. We have a,, > 1 for all n > 1.

Proof. Let us suppose otherwise in order to obtain a contradiction. Let
n > 1 be the smallest integer with a,, < 0. (1)

Note that n > 2. It follows that a,_; > 1 and a,_o = 0. Thus we cannot have a, =
Gp—1bn_1 + @p_o, SO we must have a,, = a,_1b,_1 — a,_2. Since a,, < 0, we have a,_1 < a,_s.
Thus we have a,_s = a,—1 = a,.
Let
r be the smallest index with a, = a,11 = a,,o. (2)

Then » < n—2 by the above, but also r > 2: if by = 1, then ay = a1 = 1 and a3 = asby +a; > as;
lfbl > 1, then Ao = bl >1=aqa.

By the minimal choice (2) of r, it follows that a,_; < a,. And since 2 < r < n — 2, by the
minimal choice (1) of n we have a,_1, a,,a,.1 > 0. In order to have a, 1 = a,,2, we must have
Gryo = Qry110,11 — a, so that b, > 2. Putting everything together, we conclude that

Apry1 = arbr ta,q = 20’7‘ — Qp_1 = Qp + (ar - arfl) > Qp,

which contradicts (2). O

To complete the problem, we prove that max{a,, a,,1} = n by induction. The casesn = 0,1
are given. Assume it is true for all non-negative integers strictly less than n, where n > 2. There
are two cases:

Case 1: b,_1 = 1.

Then a,,1 = a,b, + a,_1. By the inductive assumption one of a,,_1, a, is at least n — 1 and
the other, by the lemma, is at least 1. Hence

Upi1 = Apby +ap 1 = a, + a1 =2(n—1)+1=n.

Thus max{a,, a,+1} = n, as desired.

Case 2: b,_1 > 1.
Since we defined by = 1 there is an index r with 1 <7 <n — 1 such that

bnfl,bn,Q,...,br = 2 and br,1 = 1.

We have a,,1 = a,b, + a,_1 = 2a, + a,_1. Thus a, 1 —a, = a, + a,_1.

Now we claim that a, + a,_; = r. Indeed, this holds by inspection for » = 1; for > 2, one
of a,,a,_1 is at least » — 1 by the inductive assumption, while the other, by the lemma, is at
least 1. Hence a, + a,_1 > r, as claimed, and therefore a,,1 — a, = r by the last inequality in
the previous paragraph.

Since r > 1 and, by the lemma, a, > 1, from a,,1 — a, = r we get the following two
inequalities:

Gri1 =17+ 1 and Qpy1 > Q.
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Now observe that
Ay > Uyl = Qpy1 > G form=r+1,r+2,...,n—1,
since apmi1 = by — a1 = 20, — a1 = Ay + (@ — 1) > a@p,. Thus
Up > Qp_1> >0y 27 +1 = a, =n.
So max{a,, a,+1} = n, as desired.

Solution 2. We say that an index n > 1 is bad if b,,_; = 1 and b,_5 > 1; otherwise n is good.
The value of by is irrelevant to the definition of (a,) since ag = 0; so we assume that by > 1.

Lemma 1. (a) a, =1 for all n > 0.

(b) If n > 1 is good, then a,, > a,_;.
Proof. Induction on n. In the base cases n = 1,2 we have a; =1 > 1, ap = bja; = 1, and finally
as > aq if 2 is good, since in this case b; > 1.

Now we assume that the lemma statement is proved for n = 1,2,...,k with £ > 2, and
prove it for n = k + 1. Recall that a; and a;_; are positive by the induction hypothesis.

Case 1: k is bad.
We have b,_1 = 1, 80 a1 = bpag + ap_1 = ap + ap_1 > ax = 1, as required.

Case 2: k is good.

We already have ap > ai_; = 1 by the induction hypothesis. We consider three easy
subcases.

Subcase 2.1: b, > 1.
Then ag. 1 = brax — a1 = ap + (ax — ag_1) > a = 1.
Subcase 2.2: b, = b_1 = 1.
Then api1 = ap + ar_1 > ap > 1.
Subcase 2.3: b, =1 but b,_; > 1.
Then k + 1 is bad, and we need to prove only (a), which is trivial: ax,; = a — a1 > 1.

So, in all three subcases we have verified the required relations. O

Lemma 2. Assume that n > 1 is bad. Then there exists a j € {1,2,3} such that a,,; >
a1 +j+1,and apy; = a, 1 +iforalll <i<j.
Proof. Recall that b,_; = 1. Set

m = inf{i > 0: b,;—1 > 1}
(possibly m = +o0). We claim that j = min{m, 3} works. Again, we distinguish several cases,
according to the value of m; in each of them we use Lemma 1 without reference.

Case 1: m =1, so b, > 1.

Then a,,1 > 2a, + a,_1 = a,_1 + 2, as required.

Case 2: m =2, sob, =1 and b,;1 > 1.

Then we successively get

Opt1 = Qp + Qp—1 = Ap—1 + 17
Qpy2 = 2an+1 +an = 2(a'n—1 + ]-) +an = ap-1 + (an—l +an + 2) Z Qp-1 + 47

which is even better than we need.
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Case 3: m > 2, so b, =b,,1 = 1.

Then we successively get

Qpt1 = Qp + Qp—1 2 Ap—1 + 1, (pt+2 = Api1 + Ap 2 Ap—1 + IL+a,=a,1+ 27

Apys 2 Apyo + Apy1 = (CLnfl + 1) + (an,l + 2) = Up_1 + 4,

as required. ]

Lemmas 1(b) and 2 provide enough information to prove that max{a,,a,1} = n for all n
and, moreover, that a, > n often enough. Indeed, assume that we have found some n with
a,—1 = n—1. If nis good, then by Lemma 1(b) we have a,, = n as well. If n is bad, then Lemma 2
yields max{a,4i, @ntit1} = ap_1+i+1=n+iforall0<i<jand apy; = a1 +j+1=n+7;
so n + j is the next index to start with.
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Assume that a function f: R — R satisfies the following condition:
For every x,y € R such that (f(z)+y) (f(y) +z) > 0, we have f(z)+y = f(y)+=.

Prove that f(z) +y < f(y) + = whenever x > y.
(Netherlands)

Solution 1. Define g(z) = x — f(x). The condition on f then rewrites as follows:
For every x,y € R such that ((z +y) — g(z)) ((z +y) — g(y)) > 0, we have g(x) = g(y).
This condition may in turn be rewritten in the following form:
If g(x) # g(y), then the number x + y lies (non-strictly) between g(x) and g(y). (%)

Notice here that the function g;(z) = —g(—x) also satisfies (=), since

g(x) #aly) = g(=2) #9(-y) = —(z+y)lies between g(—z) and g(-y)
— 1z + y lies between g;(z) and ¢, (y).

On the other hand, the relation we need to prove reads now as
g(x) < g(y)  whenever z < y. (1)

Again, this condition is equivalent to the same one with g replaced by ¢;.

If g(z) = 2x for all x € R, then (x) is obvious; so in what follows we consider the other
case. We split the solution into a sequence of lemmas, strengthening one another. We always
consider some value of x with g(x) # 2z and denote X = g(z).

Lemma 1. Assume that X < 2x. Then on the interval (X — z;z] the function g attains at
most two values — namely, X and, possibly, some Y > X. Similarly, if X > 2z, then ¢ attains
at most two values on [z; X — x) — namely, X and, possibly, some Y < X.

Proof. We start with the first claim of the lemma. Notice that X — 2z < z, so the considered
interval is nonempty.

Take any a € (X — x;x) with g(a) # X (if it exists). If g(a) < X, then () yields g(a) <
a+x < g(z) =X, so a <X —z which is impossible. Thus, g(a) > X and hence by (x) we get
X <a+z<g(a).

Now, for any b € (X — z;x) with g(b) # X we similarly get b + = < g(b). Therefore, the
number a + b (which is smaller than each of a + = and b+ x) cannot lie between g(a) and g(b),
which by (x) implies that g(a) = ¢(b). Hence g may attain only two values on (X — x;z],
namely X and g(a) > X.

To prove the second claim, notice that g;(—z) = —X < 2 (—x), so g; attains at most two
values on (=X + x,—x], i.e., —X and, possibly, some —Y > —X. Passing back to g, we get
what we need. L]

Lemma 2. If X < 2x, then g is constant on (X — z;x). Similarly, if X > 2z, then g is constant
on (z; X —x).
Proof. Again, it suffices to prove the first claim only. Assume, for the sake of contradiction,
that there exist a,b € (X — z;x) with g(a) # g(b); by Lemma 1, we may assume that g(a) = X
and Y = g(b) > X.

Notice that min{X — a,X — b} > X — z, so there exists a u € (X — x;z) such that
u < min{X — a, X — b}. By Lemma 1, we have either g(u) = X or g(u) = Y. In the former
case, by () we have X < u + b <Y which contradicts u < X — b. In the second case, by (*)
we have X < wu + a <Y which contradicts u < X — a. Thus the lemma is proved. ]
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Lemma 3. If X < 2z, then g(a) = X for all a € (X —z;z). Similarly, if X > 2z, then g(a) = X
for all a € (z; X — x).
Proof. Again, we only prove the first claim.

By Lemmas 1 and 2, this claim may be violated only if g takes on a constant value ¥ > X
on (X — z,z). Choose any a,b e (X — z;z) with a < b. By (x), we have

Y>b+2> X (2)

In particular, we have Y > b+ x > 2a. Applying Lemma 2 to a in place of x, we obtain that ¢
is constant on (a,Y — a). By (2) again, we have t <Y —b <Y —a; so x,b€ (a;Y — a). But
X =g(z) # g(b) =Y, which is a contradiction. O

Now we are able to finish the solution. Assume that g(x) > g(y) for some = < y. Denote
X =g(x) and Y = g(y); by (x), wehave X >z +y > Y, s0o0Y —y <z <y < X —z,
and hence (Y —y;y) n (z; X —z) = (z,y) # &. On the other hand, since Y —y < y and
x < X —x, Lemma 3 shows that g should attain a constant value X on (z; X —z) and a constant
value Y # X on (Y — y;y). Since these intervals overlap, we get the final contradiction.

Solution 2. As in the previous solution, we pass to the function g satisfying () and notice
that we need to prove the condition (1). We will also make use of the function g;.

If g is constant, then (1) is clearly satisfied. So, in the sequel we assume that g takes on at
least two different values. Now we collect some information about the function g.

Claim 1. For any c € R, all the solutions of g(z) = ¢ are bounded.

Proof. Fix any y € R with g(y) # c¢. Assume first that g(y) > ¢. Now, for any = with g(z) = ¢,
by (*) we have c <z +y < g(y), or c —y < x < g(y) — y. Since c and y are constant, we get
what we need.

If g(y) < ¢, we may switch to the function g; for which we have g;(—y) > —c. By the above
arguments, we obtain that all the solutions of g;(—z) = —c are bounded, which is equivalent
to what we need. ]

As an immediate consequence, the function g takes on infinitely many values, which shows
that the next claim is indeed widely applicable.

Claim 2. If g(x) < g(y) < g(z), then = < 2.
Proof. By (x), we have g(z) < z+y <g(y) < z+y<g(2),s0z+y < z+y, as required. []

Claim 3. Assume that g(x) > g(y) for some z < y. Then g(a) € {g(x), g(y)} for all a € [z;y].

Proof. If g(y) < g(a) < g(z), then the triple (y, a, z) violates Claim 2. If g(a) < g(y) < g(z),
then the triple (a,y, ) violates Claim 2. If g(y) < g(x) < g(a), then the triple (y, z,a) violates
Claim 2. The only possible cases left are g(a) € {g(z), g(y)}. ]
In view of Claim 3, we say that an interval I (which may be open, closed, or semi-open) is
a Dirichlet interval* if the function ¢ takes on just two values on I.
Assume now, for the sake of contradiction, that (1) is violated by some z < y. By Claim 3,
[z;y] is a Dirichlet interval. Set

r = inf{a: (a;y] is a Dirichlet interval} and s = sup{b: [z;b) is a Dirichlet interval}.

Clearly, r < z < y < s. By Claim 1, r and s are finite. Denote X = g(z), Y = ¢(y), and
A= (y-2)/2

Suppose first that there exists a ¢t € (r;r + A) with f(¢f) = Y. By the definition of r, the
interval (r — A;y] is not Dirichlet, so there exists an r’ € (r — A;r] such that g(+’') ¢ {X,Y}.

*The name Dirichlet interval is chosen for the reason that g theoretically might act similarly to the Dirichlet
function on this interval.
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The function g attains at least three distinct values on [r';y], namely g(r’), g(z), and g(y).
Claim 3 now yields g(') < ¢(y); the equality is impossible by the choice of 7/, so in fact
g(r") < Y. Applying (*) to the pairs (r',y) and (¢,z) we obtain ' +y < Y <t + x, whence
r—A4+y<r'+y<t+r<r+A+zx ory—x<2A. This is a contradiction.

Thus, g(t) = X for all t € (r;7 + A). Applying the same argument to g;, we get g(t) =Y
forallte (s — A;s).

Finally, choose some s1, 55 € (s — A; s) with s; < s and denote § = (s9 — s1)/2. As before,
we choose 1’ € (r —§;7) with g(r') ¢ {X,Y} and obtain ¢g(r') < Y. Choose any t € (r;7+9); by
the above arguments, we have g(¢) = X and g(s1) = g(s2) = Y. As before, we apply (x) to the
pairs (17, s9) and (¢, s1) obtaining r —d + sy < '+ 59 <Y <t 451 <r+0+ 81, or §5— 51 < 24.
This is a final contradiction.

Comment 1. The original submission discussed the same functions f, but the question was differ-
ent — namely, the following one:

Prove that the equation f(x) = 2017x has at most one solution, and the equation f(x) = —2017z
has at least one solution.

The Problem Selection Committee decided that the question we are proposing is more natural,
since it provides more natural information about the function g (which is indeed the main character
in this story). On the other hand, the new problem statement is strong enough in order to imply the
original one easily.

Namely, we will deduce from the new problem statement (along with the facts used in the solutions)
that (i) for every N > 0 the equation g(x) = —Nz has at most one solution, and (ii) for every N > 1
the equation g(z) = Nz has at least one solution.

Claim (7) is now trivial. Indeed, g is proven to be non-decreasing, so g(z)+ Nz is strictly increasing
and thus has at most one zero.

We proceed on claim (ii). If g(0) = 0, then the required root has been already found. Otherwise,
we may assume that ¢g(0) > 0 and denote ¢ = ¢g(0). We intend to prove that x = ¢/N is the required
root. Indeed, by monotonicity we have g(¢/N) = ¢(0) = ¢; if we had g(¢/N) > ¢, then (x) would yield
¢ <0+ c¢/N < g(¢/N) which is false. Thus, g(z) = ¢ = Nz.

Comment 2. There are plenty of functions g satisfying (*) (and hence of functions f satisfying
the problem conditions). One simple example is go(z) = 2x. Next, for any increasing sequence
A=(...,a_1,a0,a1,...) which is unbounded in both directions (i.e., for every N this sequence contains
terms greater than N, as well as terms smaller than —N), the function g4 defined by

gA(x) = a; + aj+1 whenever x € [a;; aj+1)

satisfies (*). Indeed, pick any « <y with g(z) # g(y); this means that = € [a;;a;41) and y € [a;;a541)
for some 7 < j. Then we have g(x) = a; + a;+1 <z +y < a; + aj11 = g(y), as required.

There also exist examples of the mixed behavior; e.g., for an arbitrary sequence A as above and an
arbitrary subset I < Z the function

go(v), € laj;a;r1) withiel;
gar(z) = o
ga(z), z€la;ai41) withi¢l

also satisfies (x).

Finally, it is even possible to provide a complete description of all functions g satisfying (%) (and
hence of all functions f satisfying the problem conditions); however, it seems to be far out of scope for
the IMO. This description looks as follows.

Let A be any closed subset of R which is unbounded in both directions. Define the functions i4,
s4, and g4 as follows:

ig(r) =inf{a€ A: a >z}, sa(zx)=sup{ac A:a<z}, ga(z)=1ia(z)+ sa(x).
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It is easy to see that for different sets A and B the functions g4 and gp are also different (since, e.g.,
for any a € A\ B the function gp is constant in a small neighborhood of a, but the function g4 is not).
One may check, similarly to the arguments above, that each such function satisfies ().

Finally, one more modification is possible. Namely, for any x € A one may redefine g4(x) (which
is 2z) to be any of the numbers

ga+(@) =iar(z) +a or ga(z) =2+ sa-(z),
where igr(x) =inf{ae A: a >z} and sy_(z) =sup{a€ A:a < x}.

This really changes the value if 2 has some right (respectively, left) semi-neighborhood disjoint from A,
so there are at most countably many possible changes; all of them can be performed independently.

With some effort, one may show that the construction above provides all functions g satisfying (x).
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Combinatorics

A rectangle R with odd integer side lengths is divided into small rectangles with integer
side lengths. Prove that there is at least one among the small rectangles whose distances from
the four sides of R are either all odd or all even.

(Singapore)

Solution. Let the width and height of R be odd numbers a and b. Divide R into ab unit
squares and color them green and yellow in a checkered pattern. Since the side lengths of a
and b are odd, the corner squares of R will all have the same color, say green.

Call a rectangle (either R or a small rectangle) green if its corners are all green; call it
yellow if the corners are all yellow, and call it mized if it has both green and yellow corners. In
particular, R is a green rectangle.

We will use the following trivial observations.
e Every mixed rectangle contains the same number of green and yellow squares;
e Every green rectangle contains one more green square than yellow square;
e Every yellow rectangle contains one more yellow square than green square.

The rectangle R is green, so it contains more green unit squares than yellow unit squares.
Therefore, among the small rectangles, at least one is green. Let S be such a small green
rectangle, and let its distances from the sides of R be z, y, u and v, as shown in the picture.
The top-left corner of R and the top-left corner of S have the same color, which happen if and
only if x and u have the same parity. Similarly, the other three green corners of S indicate that
x and v have the same parity, y and u have the same parity, i.e. z, y, v and v are all odd or all
even.

R

v
9)
A
<
v

A
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Let n be a positive integer. Define a chameleon to be any sequence of 3n letters, with
exactly n occurrences of each of the letters a, b, and c. Define a swap to be the transposition of
two adjacent letters in a chameleon. Prove that for any chameleon X, there exists a chameleon Y

such that X cannot be changed to Y using fewer than 3n?/2 swaps.
(Australia)

Solution 1. To start, notice that the swap of two identical letters does not change a chameleon,
so we may assume there are no such swaps.

For any two chameleons X and Y, define their distance d(X,Y’) to be the minimal number
of swaps needed to transform X into Y (or vice versa). Clearly, d(X,Y) +d(Y,Z) = d(X, Z)
for any three chameleons X, Y, and Z.

Lemma. Consider two chameleons

P=qaa...abb...bcc...c and @Q =cc...cbb...baa...aqa.
— o I o

n n n n n n

Then d(P,Q) = 3n?.

Proof. For any chameleon X and any pair of distinct letters u,v € {a,b, c}, we define f, ,(X)
to be the number of pairs of positions in X such that the left one is occupied by wu, and
the right one is occupied by v. Define f(X) = fop(X) + forc(X) + fo..(X). Notice that
;tl(’z‘?()P) g fa,C(P) = fb,C(P) = n* and fa,b(Q) = fa,C(Q) = fb,C(Q) =0, so f(P) = 3n* and

Now consider some swap changing a chameleon X to X’; say, the letters a and b are swapped.
Then f,,(X) and f,,(X’) differ by exactly 1, while f, .(X) = fo.(X’) and f,.(X) = fo..(X').
This yields | f(X) — f(X')| = 1, i.e., on any swap the value of f changes by 1. Hence d(X,Y) >
|f(X)— f(Y)] for any two chameleons X and Y. In particular, d(P,Q) = |f(P) — f(Q)] = 3n?,
as desired. ]

Back to the problem, take any chameleon X and notice that d(X, P)+d(X,Q) = d(P,Q) =
3n? by the lemma. Consequently, max{d(X, P),d(X,Q)} = %, which establishes the problem
statement.

Comment 1. The problem may be reformulated in a graph language. Construct a graph G with the
chameleons as vertices, two vertices being connected with an edge if and only if these chameleons differ
by a single swap. Then d(X,Y’) is the usual distance between the vertices X and Y in this graph.
Recall that the radius of a connected graph G is defined as
r(G) = minmax d(u, v).
veV ueV
So we need to prove that the radius of the constructed graph is at least 3n2/2.

It is well-known that the radius of any connected graph is at least the half of its diameter (which
is simply max, yev d(u,v)). Exactly this fact has been used above in order to finish the solution.

Solution 2. We use the notion of distance from Solution 1, but provide a different lower
bound for it.

In any chameleon X, we enumerate the positions in it from left to right by 1,2,...,3n.
Define s.(X) as the sum of positions occupied by c. The value of s. changes by at most 1 on
each swap, but this fact alone does not suffice to solve the problem; so we need an improvement.

For every chameleon X, denote by Xz the sequence obtained from X by removing all n
letters c. Enumerate the positions in Xz from left to right by 1,2,...,2n, and define sz,(X)
as the sum of positions in Xz occupied by b. (In other words, here we consider the positions of
the b’s relatively to the a’s only.) Finally, denote

d(X,Y) i=|8:(X) = s.(Y)| + [sep(X) — scp(Y)].
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Now consider any swap changing a chameleon X to X’. If no letter ¢ is involved into this
swap, then s.(X) = s.(X’); on the other hand, exactly one letter b changes its position in Xz, so
|52.6(X) — sep(X')| = 1. If a letter ¢ is involved into a swap, then X; = X7, 50 5¢5(X) = sz5(X’)
and [s.(X) — s.(X")| = 1. Thus, in all cases we have d'(X, X’) = 1.

As in the previous solution, this means that d(X,Y) > d'(X,Y) for any two chameleons X
and Y. Now, for any chameleon X we will indicate a chameleon Y with d'(X,Y) > 3n?/2, thus
finishing the solution.

The function s. attains all integer values from 1+ ---+n = @ to(2n+1)+---+3n=

2n? + "("H I s (X) < n?+ "("H) , then we put the letter ¢ into the last n positions in Y
othervvlse we put the letter c 1nto the first n positions in Y. In either case we already have
5.(X) — s.(Y)| = n?.

Similarly, sz, ranges from @ to n? + "("+1 . So, if sz4(X) < %2 - @, then we put
the letter b into the last n positions in Y which are still free; otherwise, we put the letter b into
the first n such positions The remaining positions are occupied by a. In any case, we have

5ep(X) — 52p(Y)| = %, thus (X, Y) = n?+ % = 3" , as desired.

Comment 2. The two solutions above used two lower bounds |f(X) — f(Y)| and d'(X,Y) for the
number d(X,Y). One may see that these bounds are closely related to each other, as

fa,c(X) + fb,c(X) = SC(X) - 9 2

and  fqp(X) = sep(X) —

One can see that, e.g., the bound d’'(X,Y") could as well be used in the proof of the lemma in Solution 1.
Let us describe here an even sharper bound which also can be used in different versions of the
solutions above.

In each chameleon X, enumerate the occurrences of a from the left to the right as ai,as,...,an,.
Since we got rid of swaps of identical letters, the relative order of these letters remains the same during
the swaps. Perform the same operation with the other letters, obtaining new letters b1,...,b, and
C1,...,Cn. Denote by A the set of the 3n obtained letters.

Since all 3n letters became different, for any chameleon X and any s € A we may define the
position Ng(X) of s in X (thus 1 < Ng(X) < 3n). Now, for any two chameleons X and Y we say that
a pair of letters (s,t) € Ax Ais an (X,Y)-inversion if Ng(X) < N¢(X) but Ng(Y) > N (Y'), and define
d*(X,Y) to be the number of (X,Y)-inversions. Then for any two chameleons Y and Y’ differing by a
single swap, we have |d*(X,Y) — d*(X,Y”")| = 1. Since d*(X, X ) = 0, this yields d(X,Y) > d*(X,Y)
for any pair of chameleons X and Y. The bound d* may also be used in both Solution 1 and Solution 2.

Comment 3. In fact, one may prove that the distance d* defined in the previous comment coincides
with d. Indeed, if X # Y, then there exist an (X,Y)-inversion (s,¢). One can show that such s and ¢
may be chosen to occupy consecutive positions in Y. Clearly, s and ¢ correspond to different letters
among {a,b,c}. So, swapping them in Y we get another chameleon Y’ with d*(X,Y”) = d*(X,Y) — 1.
Proceeding in this manner, we may change Y to X in d*(X,Y’) steps.

Using this fact, one can show that the estimate in the problem statement is sharp for all n > 2.
(For n = 1 it is not sharp, since any permutation of three letters can be changed to an opposite one in
no less than three swaps.) We outline the proof below.

For any k > 0, define

Xor = abcabc...abccbacba...cba and Xorig = abcabe. .. abcabebeacabcbacba. .. cba .
< — < g —_— -
3k letters 3k letters 3k letters 3k letters

We claim that for every n > 2 and every chameleon Y, we have d*(X,,Y) < [3n2 /2] This will mean
that for every n > 2 the number 3n2?/2 in the problem statement cannot be changed by any number
larger than [3n?/2].

For any distinct letters u,v € {a,b,c} and any two chameleons X and Y, we define d;; ,(X,Y) as
the number of (X,Y)-inversions (s,t) such that s and ¢ are instances of u and v (in any of the two
possible orders). Then d*(X,Y) = d ,(X,Y) + dj (X, Y) + d; ,(X,Y).
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We start with the case when n = 2k is even; denote X = Xg.. We show that d;b(X,Y) < 2k2
for any chameleon Y'; this yields the required estimate. Proceed by the induction on k with the trivial
base case k = 0. To perform the induction step, notice that d* ,(X,Y") is indeed the minimal number of
swaps needed to change Yz into Xz. One may show that moviilg a1 and agy in Y onto the first and the
last positions in Y, respectively, takes at most 2k swaps, and that subsequent moving b; and by onto
the second and the second last positions takes at most 2k — 2 swaps. After performing that, one may
delete these letters from both Xz and Yz and apply the induction hypothesis; so Xz can be obtained
from Y; using at most 2(k — 1) + 2k + (2k — 2) = 2k? swaps, as required.

If n = 2k + 3 is odd, the proof is similar but more technically involved. Namely, we claim that
d;b(ngJrg,Y) < 2k% 4 6k + 5 for any chameleon Y, and that the equality is achieved only if Yz =
bb...baa...a. The proof proceeds by a similar induction, with some care taken of the base case, as
well as of extracting the equality case. Similar estimates hold for dj , and d7,. Summing three such
estimates, we obtain 7

3 2
d*(Xopss,Y) < 3(2k2 + 6k + 5) = [%} +1,
which is by 1 more than we need. But the equality could be achieved only if Yz = bb...baa...a

and, similarly, Y; = aa...acc...cand Yz = cc...cbb...b. Since these three equalities cannot hold
simultaneously, the proof is finished.
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Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In
each move, Sir Alex is allowed to perform exactly one of the following two operations:

(1) Choose any number of the form 27, where j is a non-negative integer, and put it into an
empty cell.

(2) Choose two (not necessarily adjacent) cells with the same number in them; denote that
number by 2. Replace the number in one of the cells with 27! and erase the number in
the other cell.

At the end of the game, one cell contains the number 2", where n is a given positive integer,
while the other cells are empty. Determine the maximum number of moves that Sir Alex could
have made, in terms of n.

(Thailand)
Answer: 22?20 (’;) — 1.

Solution 1. We will solve a more general problem, replacing the row of 9 cells with a row of &
cells, where k is a positive integer. Denote by m(n, k) the maximum possible number of moves
Sir Alex can make starting with a row of k£ empty cells, and ending with one cell containing
the number 2" and all the other & — 1 cells empty. Call an operation of type (1) an insertion,
and an operation of type (2) a merge.

Only one move is possible when k = 1, so we have m(n,1) = 1. From now on we consider
k = 2, and we may assume Sir Alex’s last move was a merge. Then, just before the last move,
there were exactly two cells with the number 277!, and the other & — 2 cells were empty.

Paint one of those numbers 2"~! blue, and the other one red. Now trace back Sir Alex’s
moves, always painting the numbers blue or red following this rule: if a and b merge into c,
paint a and b with the same color as c. Notice that in this backward process new numbers are
produced only by reversing merges, since reversing an insertion simply means deleting one of
the numbers. Therefore, all numbers appearing in the whole process will receive one of the two
colors.

Sir Alex’s first move is an insertion. Without loss of generality, assume this first number
inserted is blue. Then, from this point on, until the last move, there is always at least one cell
with a blue number.

Besides the last move, there is no move involving a blue and a red number, since all merges
involves numbers with the same color, and insertions involve only one number. Call an insertion
of a blue number or merge of two blue numbers a blue move, and define a red move analogously.

The whole sequence of blue moves could be repeated on another row of k cells to produce
one cell with the number 27! and all the others empty, so there are at most m(n — 1, k) blue
moves.

Now we look at the red moves. Since every time we perform a red move there is at least
one cell occupied with a blue number, the whole sequence of red moves could be repeated on a
row of k — 1 cells to produce one cell with the number 27! and all the others empty, so there
are at most m(n — 1,k — 1) red moves. This proves that

m(n, k) <m(n—1,k)+m(n—1,k—1)+ 1.

On the other hand, we can start with an empty row of k cells and perform m(n — 1,k)
moves to produce one cell with the number 2"~! and all the others empty, and after that
perform m(n — 1,k — 1) moves on those & — 1 empty cells to produce the number 2"~! in one
of them, leaving k — 2 empty. With one more merge we get one cell with 2" and the others
empty, proving that

m(n, k) =m(n—1,k)+m(n—1,k—1)+ 1.
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It follows that

m(n,k) =m(n—1,k)+m(n—1,k—1)+1, (1)

forn>1and k >

Ifk=1o0orn = O, we must insert 2" on our first move and immediately get the final
configuration, so m(0,k) = 1 and m(n,1) = 1, for n > 0 and k£ > 1. These initial values,
together with the recurrence relation (1), determine m(n, k) uniquely.

Finally, we show that
k—1
n
m(n, k) = 2 < ) ~1, (2)

for all integers n > 0 and k > 1

We use induction on n. Since m(0,k) = 1 for k > 1, (2) is true for the base case. We make
the induction hypothesis that (2) is true for some fixed positive integer n and all & > 1. We
have m(n+1,1) =1 =2("}") — 1, and for k > 2 the recurrence relation (1) and the induction
hypothesis give us

k=1l k=l k=l n k=l 41
=5 (5)-2 (") 22 () (1) a8 ()
Z(]) 23—1 Z J J—1 ; J
which completes the proof.

Comment 1. After deducing the recurrence relation (1), it may be convenient to homogenize the
recurrence relation by defining h(n, k) = m(n, k) + 1. We get the new relation

h(n,k) = h(n —1,k) + h(n — 1,k), (3)

for n > 1 and k > 2, with initial values h(0,k) = h(n,1) =2, forn > 0 and k >
This may help one to guess the answer, and also with other approaches hke the one we develop
next.

Comment 2. We can use a generating function to find the answer without guessing. We work with
the homogenized recurrence relation (3). Define h(n,0) = 0 so that (3) is valid for £ = 1 as well. Now
we set up the generating function f(z,y) = >3, 1~ h(n, k)az"y*. Multiplying the recurrence relation (3)
by z™y* and summing over n,k > 1, we get

Z h(n, k)z"y* = z Z h(n —1,k)z"1y* + ay Z h(n — 1,k — 1)z" tyF~L,
n,k>=1 n,k>=1 n,k>=1
Completing the missing terms leads to the following equation on f(z,y):
n=0 k=1 n=0
Substituting the initial values, we obtain

2y 1
1—y 1—xz(1+y)

flz,y) =

Developing as a power series, we get

f(z,y) —QZy Z 1+y)"

j=1 n=0
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The coefficient of 2™ in this power series is

QZyj.(1+y)n=2Zyj.Z<7Z>yi’

j>1 =1 >0

and extracting the coefficient of 3* in this last expression we finally obtain the value for h(n, k),

h(n, k) = 2];2: (;‘)

This proves that

m(n, k) = 21;22 (?) _ 1

The generating function approach also works if applied to the non-homogeneous recurrence rela-
tion (1), but the computations are less straightforward.

Solution 2. Define merges and insertions as in Solution 1. After each move made by Sir Alex
we compute the number N of empty cells, and the sum S of all the numbers written in the
cells. Insertions always increase S by some power of 2, and increase N exactly by 1. Merges do
not change S and decrease N exactly by 1. Since the initial value of N is 0 and its final value
is 1, the total number of insertions exceeds that of merges by exactly one. So, to maximize the
number of moves, we need to maximize the number of insertions.

We will need the following lemma.

Lemma. If the binary representation of a positive integer A has d nonzero digits, then A cannot
be represented as a sum of fewer than d powers of 2. Moreover, any representation of A as a
sum of d powers of 2 must coincide with its binary representation.

Proof. Let s be the minimum number of summands in all possible representations of A as sum
of powers of 2. Suppose there is such a representation with s summands, where two of the
summands are equal to each other. Then, replacing those two summands with the result of
their sum, we obtain a representation with fewer than s summands, which is a contradiction.
We deduce that in any representation with s summands, the summands are all distinct, so any
such representation must coincide with the unique binary representation of A, and s =d. [

Now we split the solution into a sequence of claims.
Claim 1. After every move, the number S is the sum of at most k — 1 distinct powers of 2.

Proof. If S is the sum of & (or more) distinct powers of 2, the Lemma implies that the & cells
are filled with these numbers. This is a contradiction since no more merges or insertions can

be made. 0]

Let A(n,k — 1) denote the set of all positive integers not exceeding 2" with at most k — 1
nonzero digits in its base 2 representation. Since every insertion increases the value of S, by
Claim 1, the total number of insertions is at most |A(n, k — 1)|. We proceed to prove that it is
possible to achieve this number of insertions.

Claim 2. Let A(n,k—1) = {a1,a9,...,a,}, witha; < as < -+ < a,,. If after some of Sir Alex’s
moves the value of S is a;, with j € {1,2,...,m — 1}, then there is a sequence of moves after
which the value of S is exactly a;;.

Proof. Suppose S = a;. Performing all possible merges, we eventually get different powers of 2
in all nonempty cells. After that, by Claim 1 there will be at least one empty cell, in which we
want to insert a;1 — a;. It remains to show that a;1 — a; is a power of 2.

For this purpose, we notice that if a; has less than £ — 1 nonzero digits in base 2 then
a;41 = aj + 1. Otherwise, we have a; = 2061 ... 4 202 4 901 with by < by < --- < by_y. Then,
adding any number less than 2% to a; will result in a number with more than k& — 1 nonzero
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binary digits. On the other hand, a; + 2°* is a sum of k powers of 2, not all distinct, so by the
Lemma it will be a sum of less then k distinct powers of 2. This means that a;,; — a; = 2%,
completing the proof. |

Claims 1 and 2 prove that the maximum number of insertions is |A(n,k — 1)|. We now
compute this number.

Claim 3. |A(n, k—1)] = 3525 (7).
Proof. The number 2" is the only element of A(n,k — 1) with n + 1 binary digits. Any other
element has at most n binary digits, at least one and at most k& — 1 of them are nonzero (so

they are ones). For each j € {1,2,...,k— 1}, there are (’;) such elements with exactly j binary
digits equal to one. We conclude that |A(n,k —1)| =1+ 25;11 (?) = Zf;ol (") O

J
Recalling that the number of insertions exceeds that of merges by exactly 1, we deduce that
the maximum number of moves is 22?;01 (’;) — 1.
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Let N = 2 be an integer. N(N + 1) soccer players, no two of the same height, stand
in a row in some order. Coach Ralph wants to remove N(N — 1) people from this row so that
in the remaining row of 2N players, no one stands between the two tallest ones, no one stands
between the third and the fourth tallest ones, ..., and finally no one stands between the two

shortest ones. Show that this is always possible.
(Russia)

Solution 1. Split the row into N blocks with N + 1 consecutive people each. We will show
how to remove N — 1 people from each block in order to satisfy the coach’s wish.

First, construct a (N + 1) x N matrix where z;; is the height of the i'" tallest person of
the j™block—in other words, each column lists the heights within a single block, sorted in
decreasing order from top to bottom.

We will reorder this matrix by repeatedly swapping whole columns. First, by column per-
mutation, make sure that zo; = max{zy;: i = 1,2,..., N} (the first column contains the
largest height of the second row). With the first column fixed, permute the other ones so that
T3o = max{zs,;: i = 2,..., N} (the second column contains the tallest person of the third row,
first column excluded). In short, at step k (k = 1,2,..., N — 1), we permute the columns from
k to N so that xy1, = max{z;,: i =k,k+1,..., N}, and end up with an array like this:

L1,1 T12 13 - TiN-1 1N
\ V V V V
21 > T22 To3 *+° Ty N-1 T2 N
V \ V V V
3,1 T3 > XT3,3 ~*° T3N-1 T3 N
V V \% \Y, \Y,
V V V \ V
TN ITN,2 IN3 " TN,N-1> TN,N
V V V V \

TN+11 TN+1,2 TN+1,3° " "TN+1,N-1 LN+1,N

Now we make the bold choice: from the original row of people, remove everyone but those
with heights
T11 > X271 > T22 > T32 > "> TNN-1-> TN,N > TN+1,N (*)

Of course this height order (*) is not necessarily their spatial order in the new row. We now
need to convince ourselves that each pair (zyx; xr41) remains spatially together in this new
row. But zyx and xy41 belong to the same column/block of consecutive N + 1 people; the
only people that could possibly stand between them were also in this block, and they are all
gone.

Solution 2. Split the people into N groups by height: group G has the N + 1 tallest ones,
group G has the next N + 1 tallest, and so on, up to group Gy with the N + 1 shortest people.

Now scan the original row from left to right, stopping as soon as you have scanned two
people (consecutively or not) from the same group, say, G;. Since we have N groups, this must
happen before or at the (N + 1) person of the row. Choose this pair of people, removing all
the other people from the same group G; and also all people that have been scanned so far.
The only people that could separate this pair’s heights were in group G; (and they are gone);
the only people that could separate this pair’s positions were already scanned (and they are
gone t00).

We are now left with N — 1 groups (all except G;). Since each of them lost at most one
person, each one has at least N unscanned people left in the row. Repeat the scanning process
from left to right, choosing the next two people from the same group, removing this group and
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everyone scanned up to that point. Once again we end up with two people who are next to
each other in the remaining row and whose heights cannot be separated by anyone else who
remains (since the rest of their group is gone). After picking these 2 pairs, we still have N — 2
groups with at least NV — 1 people each.

If we repeat the scanning process a total of N times, it is easy to check that we will end
up with 2 people from each group, for a total of 2N people remaining. The height order is
guaranteed by the grouping, and the scanning construction from left to right guarantees that
each pair from a group stand next to each other in the final row. We are done.

Solution 3. This is essentially the same as solution 1, but presented inductively. The essence
of the argument is the following lemma.

Lemma. Assume that we have N disjoint groups of at least IV + 1 people in each, all people
have distinct heights. Then one can choose two people from each group so that among the
chosen people, the two tallest ones are in one group, the third and the fourth tallest ones are
in one group, ..., and the two shortest ones are in one group.

Proof. Induction on N > 1; for N = 1, the statement is trivial.

Consider now N groups G, ...,Gy with at least N +1 people in each for N > 2. Enumerate
the people by 1,2,..., N(N + 1) according to their height, say, from tallest to shortest. Find
the least s such that two people among 1,2,... s are in one group (without loss of generality,
say this group is Gy). By the minimality of s, the two mentioned people in Gy are s and some
1< S.

Now we choose people 7 and s in Gy, forget about this group, and remove the people
1,2,...,s from Gy,...,Gy_1. Due to minimality of s again, each of the obtained groups

y...,Gy_, contains at least N people. By the induction hypothesis, one can choose a pair

of people from each of GY,...,G’y_; so as to satisfy the required conditions. Since all these
people have numbers greater than s, addition of the pair (s,7) from G does not violate these

requirements. ]

To solve the problem, it suffices now to split the row into N contiguous groups with N + 1
people in each and apply the Lemma to those groups.

Comment 1. One can identify each person with a pair of indices (p,h) (p,h € {1,2,...,N(N +1)})
so that the p'" person in the row (say, from left to right) is the A tallest person in the group. Say
that (a,b) separates (z1,y1) and (z2,y2) whenever a is strictly between z1 and y1, or b is strictly
between x5 and y2. So the coach wants to pick 2N people (p;, h;)(i = 1,2,...,2N) such that no chosen
person separates (pi,h1) from (pe,ha), no chosen person separates (ps,hs) and (p4, hys), and so on.
This formulation reveals a duality between positions and heights. In that sense, solutions 1 and 2 are
dual of each other.

Comment 2. The number N(N + 1) is sharp for N =2 and N = 3, due to arrangements 1,5, 3,4, 2
and 1,10,6,4,3,9,5,8,7,2,11.
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A hunter and an invisible rabbit play a game in the Euclidean plane. The hunter’s
starting point H, coincides with the rabbit’s starting point Ry. In the n'" round of the game
(n = 1), the following happens.

(1) First the invisible rabbit moves secretly and unobserved from its current point R,_; to
some new point R, with R, R, = 1.

(2) The hunter has a tracking device (e.g. dog) that returns an approximate position R/, of
the rabbit, so that R, R) < 1.

(3) The hunter then visibly moves from point H,_; to a new point H,, with H, H, = 1.

Is there a strategy for the hunter that guarantees that after 10° such rounds the distance
between the hunter and the rabbit is below 1007

(Austria)

Answer: There is no such strategy for the hunter. The rabbit “wins".

Solution. If the answer were “yes", the hunter would have a strategy that would “work", no
matter how the rabbit moved or where the radar pings R/, appeared. We will show the opposite:
with bad luck from the radar pings, there is no strategy for the hunter that guarantees that
the distance stays below 100 in 10° rounds.

So, let d, be the distance between the hunter and the rabbit after n rounds. Of course, if
d, = 100 for any n < 10%, the rabbit has won — it just needs to move straight away from the
hunter, and the distance will be kept at or above 100 thereon.

We will now show that, while d,, < 100, whatever given strategy the hunter follows, the
rabbit has a way of increasing d2 by at least % every 200 rounds (as long as the radar pings are
lucky enough for the rabbit). This way, d? will reach 10% in less than 2-10*-200 = 4-10° < 10°
rounds, and the rabbit wins.

Suppose the hunter is at H,, and the rabbit is at R,,. Suppose even that the rabbit reveals
its position at this moment to the hunter (this allows us to ignore all information from previous
radar pings). Let r be the line H,R,, and Y; and Y5 be points which are 1 unit away from r
and 200 units away from R, as in the figure below.

The rabbit’s plan is simply to choose one of the points Y; or Y5 and hop 200 rounds straight
towards it. Since all hops stay within 1 distance unit from r, it is possible that all radar pings
stay on r. In particular, in this case, the hunter has no way of knowing whether the rabbit
chose Y; or Y.

Looking at such pings, what is the hunter going to do? If the hunter’s strategy tells him to
go 200 rounds straight to the right, he ends up at point H’ in the figure. Note that the hunter
does not have a better alternative! Indeed, after these 200 rounds he will always end up at
a point to the left of H’. If his strategy took him to a point above r, he would end up even
further from Y5; and if his strategy took him below r, he would end up even further from Y.
In other words, no matter what strategy the hunter follows, he can never be sure his distance
to the rabbit will be less than y def H'Y, = H'Y; after these 200 rounds.

To estimate 32, we take Z as the midpoint of segment Y;Ys, we take R as a point 200 units
to the right of R,, and we define e = ZR’ (note that H'R’ = d,,). Then
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v =1+ HZ)?*=1+(d, —¢)*

where
1

1
e =200—-R,Z =200—-+2002—-1= > —.
200 + /2002 — 1 400

In particular, €2 + 1 = 400e, so
v’ =d2 —2ed, + e+ 1 =d> +e(400 — 2d,,).

Since ¢ > 1= and we assumed d,, < 100, this shows that y* > d2+31. So, as we claimed, with this
list of radar pings, no matter what the hunter does, the rabbit might achieve d? ) > d2 + 3.

The wabbit wins.

Comment 1. Many different versions of the solution above can be found by replacing 200 with some
other number IV for the number of hops the rabbit takes between reveals. If this is done, we have:

1

1
e=N-/N2—-1>— >
N++/N2-1 2N

and
g2 +1 = 2Ne,

so, as long as N > d,, we would find

N—d
y? =d> +e(2N —2d,) > d> + —
For example, taking N = 101 is already enough—the squared distance increases by at least Wl1 every
101 rounds, and 1012 - 10* = 1.0201 - 108 < 10° rounds are enough for the rabbit. If the statement is
made sharper, some such versions might not work any longer.

Comment 2. The original statement asked whether the distance could be kept under 10'° in 10?0
rounds.
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Let n > 1 be an integer. An n x n x n cube is composed of n? unit cubes. Each
unit cube is painted with one color. For each n x n x 1 box consisting of n? unit cubes (of any
of the three possible orientations), we consider the set of the colors present in that box (each
color is listed only once). This way, we get 3n sets of colors, split into three groups according
to the orientation. It happens that for every set in any group, the same set appears in both
of the other groups. Determine, in terms of n, the maximal possible number of colors that are
present.

(Russia)

n(n+1)(2n+1)

Answer: The maximal number is 5

Solution 1. Call an xn x 1 box an z-box, a y-box, or a z-boz, according to the direction of
its short side. Let C' be the number of colors in a valid configuration. We start with the upper
bound for C.

Let Cy, Co, and C3 be the sets of colors which appear in the big cube exactly once, exactly
twice, and at least thrice, respectively. Let M; be the set of unit cubes whose colors are in C;,
and denote n; = |M;].

Consider any xz-box X, and let Y and Z be a y- and a 2-box containing the same set of
colors as X does.

Claim. 4| X n M| + | X n M| < 3n + 1.
Proof. We distinguish two cases.

Case 1: X n M, # @.

A cube from X n M; should appear in all three boxes X, Y, and Z, so it should lie in
XnYnZ Thus X n My =XnY nZand | X n M| =1.

Consider now the cubes in X n M,. There are at most 2(n — 1) of them lying in X n'Y or
X n Z (because the cube from X nY n Z is in M;). Let a be some other cube from X n M,.
Recall that there is just one other cube a’ sharing a color with a. But both Y and Z should
contain such cube, so o’ e Y nZ (but ¢’ ¢ X nY n Z). The map a — d is clearly injective,
so the number of cubes a we are interested in does not exceed [(Y n Z)\ X| = n — 1. Thus
| X "My <2(n—1)+(n—1) = 3(n—1), and hence 4| X " M;|+|X "My <4+3(n—1) = 3n+1.

Case 2: X n M, = @.

In this case, the same argument applies with several changes. Indeed, X n M, contains
at most 2n — 1 cubes from X nY or X n Z. Any other cube a in X n M, corresponds to
some a' € Y n Z (possibly with o’ € X), so there are at most n of them. All this results in
| X N M| < (2n—1) +n = 3n — 1, which is even better than we need (by the assumptions of
our case). 0]

Summing up the inequalities from the Claim over all z-boxes X, we obtain

dny +ny < n(3n +1).

Obviously, we also have n, + ny + ng = n?.

Now we are prepared to estimate C'. Due to the definition of the M;, we have n; > i|C;|, so
ne m3 nit+ng+mng 4dng+ny n® 3ni+n nn+1)2n+1)

C < L <= - .
mt sty 3 % 3776 6

It remains to present an example of an appropriate coloring in the above-mentioned number
of colors. For each color, we present the set of all cubes of this color. These sets are:

1. n singletons of the form S; = {(7,7,7)} (with 1 <14 < n);
(

)
2. 3(;) doubletons of the forms Dz‘l,j = { i,j,j), (],’L,Z)}, Dlz,] = {(]7%])’ (Z,j,’t)}, and Di] -

{(4,4,4), (i,4,5)} (with 1 <@ < j < n);
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3. 2(3) triplets of the form T;;, = {(i,4,k), (j, k, i), (k,i,7)} (with 1 < i< j <k <nor
I1<i<k<j<n).

One may easily see that the i*" boxes of each orientation contain the same set of colors, and

that 3n(n—1) nn-Dm-2) nln+1)2n+1)
ntTy T T 3 - 6

colors are used, as required.

Solution 2. We will approach a new version of the original problem. In this new version, each
cube may have a color, or be invisible (not both). Now we make sets of colors for each n xn x 1
box as before (where “invisible" is not considered a color) and group them by orientation, also
as before. Finally, we require that, for every non-empty set in any group, the same set must
appear in the other 2 groups. What is the maximum number of colors present with these new
requirements?

Let us call strange a big n xn xn cube whose painting scheme satisfies the new requirements,
and let D be the number of colors in a strange cube. Note that any cube that satisfies the
original requirements is also strange, so max(D) is an upper bound for the original answer.

Claim. D < n(n+1)(2n+1)
. S r—

Proof. The proof is by induction on n. If n = 1, we must paint the cube with at most 1 color.

Now, pick a n x n x n strange cube A, where n > 2. If A is completely invisible, D = 0 and
we are done. Otherwise, pick a non-empty set of colors S which corresponds to, say, the boxes
X, Y and Z of different orientations.

Now find all cubes in A whose colors are in & and make them invisible. Since X, Y
and Z are now completely invisible, we can throw them away and focus on the remaining
(n—1) x (n—1) x (n — 1) cube B. The sets of colors in all the groups for B are the same
as the sets for A, removing exactly the colors in §, and no others! Therefore, every nonempty
set that appears in one group for B still shows up in all possible orientations (it is possible
that an empty set of colors in B only matched X, Y or Z before these were thrown away, but
remember we do not require empty sets to match anyway). In summary, B is also strange.
(n=Dn@n=1) lors. Since
(n—l)rg(%—l) 12 =

colors. 0

By the induction hypothesis, we may assume that B has at most

there were at most n? different colors in S, we have that A has at most
n(n+1)(2n+1)
6

Finally, the construction in the previous solution shows a painting scheme (with no invisible
cubes) that reaches this maximum, so we are done.
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For any finite sets X and Y of positive integers, denote by fx (k) the k'™ smallest
positive integer not in X, and let

XY =Xu{fx(y):yeY}

Let A be a set of a > 0 positive integers, and let B be a set of b > 0 positive integers. Prove
that if A« B = B = A, then

14*(14**(A*(A*A))Ez?*(B**(B*(B*B))E
Aappe;rgbtimes Bappea;ga times

(U.S.A.)

Solution 1. For any function ¢g: Z-¢ — Z-¢ and any subset X < Z-q, we define g(X) =
{g(x): x € X}. We have that the image of fx is fx(Z~o) = Z=o \ X. We now show a general
lemma about the operation =, with the goal of showing that = is associative.

Lemma 1. Let X and Y be finite sets of positive integers. The functions fx.y and fx o fy are
equal.

Proof. We have

fxay (Zz0) = Zoo\(X#Y) = (Zo0\X )\ [x (V) = [x(Zoo)\[x(Y) = [x(Z>0\Y) = fx(fv(Z=0))-

Thus, the functions fx.y and fx o fy are strictly increasing functions with the same range.
Because a strictly function is uniquely defined by its range, we have fx.y = fx o fy. ]

Lemma 1 implies that = is associative, in the sense that (A * B)» C = A« (B = C) for any
finite sets A, B, and C of positive integers. We prove the associativity by noting

Z=o \ ((A* B) * C) = faspysc(Z=o) = fasp(fc(Z=0)) = fa(f5(fc(Z=0)))
= fA(fB*C(Z>O) = fA*(B*C) (Z>o) = Z~o \ (A * (B * C))

In light of the associativity of %, we may drop the parentheses when we write expressions
like A = (B * C). We also introduce the notation

X*k=g(*(X*---*(X*(X*X))...2.

~
X appears k times

Our goal is then to show that A+ B = Bx A implies A** = B**. We will do so via the following
general lemma.

Lemma 2. Suppose that X and Y are finite sets of positive integers satisfying X *Y =Y « X
and | X| = |Y]|. Then, we must have X =Y.

Proof. Assume that X and Y are not equal. Let s be the largest number in exactly one of
X and Y. Without loss of generality, say that s € X \ Y. The number fx(s) counts the s
number not in X, which implies that

fx(s)=s+|Xn{1,2,..., fx(s)}]- (1)
Since fx(s) = s, we have that

{fx()+ 1, fx()+ 2.} n X = {fx(s) + 1, fx(s) +2,...} nY,

which, together with the assumption that | X| = |Y|, gives

X {12, fx(8)} =Y n{1,2,..., fx(s)}]- (2)
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Now consider the equation
t— ‘Yﬁ{l,Q,...,t}‘ = s.

This equation is satisfied only when ¢ € [ fy(s), fy(s + 1)), because the left hand side counts
the number of elements up to ¢ that are not in Y. We have that the value ¢t = fx(s) satisfies
the above equation because of (1) and (2). Furthermore, since fx(s) ¢ X and fx(s) = s, we
have that fx(s) ¢ Y due to the maximality of s. Thus, by the above discussion, we must have
fx(s) = fr(s).

Finally, we arrive at a contradiction. The value fx(s) is neither in X nor in fx(Y), because
sisnot in Y by assumption. Thus, fx(s) ¢ X =Y. However, since s € X, we have fy(s) € V=X,
a contradiction. ]

We are now ready to finish the proof. Note first of all that |A**| = ab = |B*?|. Moreover,
since A+ B = B+ A, and * is associative, it follows that A*® + B** = B*® « A*»  Thus, by
Lemma 2, we have A*® = B*® as desired.

Comment 1. Taking A = X** and B = X* generates many non-trivial examples where AxB = BxA.
There are also other examples not of this form. For example, if A = {1,2,4} and B = {1, 3}, then
AxB=1{1,2,3,4,6} = B« A.

Solution 2. We will use Lemma 1 from Solution 1. Additionally, let X** be defined as in
Solution 1. If X and Y are finite sets, then

fx=fv = fx(Zso) = fy(Zso) = (Zs0\X) = (Z>0\Y) &= X =Y, (3)

where the first equivalence is because fx and fy are strictly increasing functions, and the second
equivalence is because fx(Zso) = Z=o \ X and fy(Zso) = Z=o \ Y.

Denote g = f4 and h = fg. The given relation A+ B = B = A is equivalent to fixp = [fBxa
because of (3), and by Lemma 1 of the first solution, this is equivalent to goh = hog. Similarly,
the required relation A*® = B*® is equivalent to ¢ = A% We will show that

g'(n) = h*(n) (4)

for all n € Z~(, which suffices to solve the problem.

To start, we claim that (4) holds for all sufficiently large n. Indeed, let p and ¢ be the
maximal elements of A and B, respectively; we may assume that p > ¢. Then, for every n > p
we have g(n) = n + a and h(n) = n + b, whence ¢g°(n) = n + ab = h%(n), as was claimed.

In view of this claim, if (4) is not identically true, then there exists a maximal s with ¢°(s) #
h(s). Without loss of generality, we may assume that g(s) # s, for if we had g(s) = h(s) = s,
then s would satisfy (4). As g is increasing, we then have g(s) > s, so (4) holds for n = g(s).
But then we have

9(g"(s)) = g"(s) = ¢"(n) = h*(n) = h*(g(s)) = g(h*(s)),
where the last equality holds in view of g o h = h o g. By the injectivity of g, the above

equality yields ¢°(s) = h%(s), which contradicts the choice of s. Thus, we have proved that (4)
is identically true on Z-q, as desired.

Comment 2. We present another proof of Lemma 2 of the first solution.

Let = |X| = |Y|. Say that u is the smallest number in X and v is the smallest number in Y;
assume without loss of generality that u < v.

Let T be any finite set of positive integers, and define ¢ = |T'|. Enumerate the elements of X as
T] < X9 < --- < . Define S, = f(T*X*(mfl))(X), and enumerate its elements s,, 1 < sp2 < -+ <
Smn- Note that the S, are pairwise disjoint; indeed, if we have m < m/, then

Sy T# X* < Tx X*M =D and S, = (T X*™)\ (T # X*m'~1)

We claim the following statement, which essentially says that the .S,, are eventually linear translates
of each other:
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Claim. For every 1, there exists some m; and ¢; such that for all m > m;, we have that s,, ; = t+mn—c;.
Furthermore, the ¢; do not depend on the choice of T

First, we show that this claim implies Lemma 2. We may choose T'= X and T' =Y. Then, there
is some m’ such that for all m > m/, we have

Fxam(X) = fyxsm-ny(X). (5)

Because u is the minimum element of X, v is the minimum element of Y, and u < v, we have that

( g fX*m(X)> U X = ( U f(Y*X*<m_1))(X)> O (Y« XY = w1, ),

and in both the first and second expressions, the unions are of pairwise distinct sets. By (5), we obtain
X' —y & X*(m' =1 Now, because X and Y commute, we get X*™ = X*("' =D +y andso X =Y.
We now prove the claim.

Proof of the claim. We induct downwards on ¢, first proving the statement for ¢ = n, and so on.

Assume that m is chosen so that all elements of S, are greater than all elements of 7" (which is
possible because T is finite). For i = n, we have that s, , > sj, for every k < m. Thus, all (m —1)n
numbers of the form s, for K < m and 1 < u < n are less than s,,,. We then have that s, , is the
((m—1)n+z,)" number not in 7', which is equal to t + (m — 1)n +z,. So we may choose ¢, = z,, —n,
which does not depend on T', which proves the base case for the induction.

For i < n, we have again that all elements s, ; for j < 7 and s, ; for p < m are less than s,, ;,
S0 Sm.i is the ((m — 1)i + x;)"* element not in T or of the form s,; for j > i and p < m. But by
the inductive hypothesis, each of the sequences s, ; is eventually periodic with period n, and thus the
sequence s,,; such must be as well. Since each of the sequences s, ; —t with j > 7 eventually do not
depend on T, the sequence s,,; —t eventually does not depend on T either, so the inductive step is
complete. This proves the claim and thus Lemma 2. O
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Let n be a given positive integer. In the Cartesian plane, each lattice point with
nonnegative coordinates initially contains a butterfly, and there are no other butterflies. The
neighborhood of a lattice point ¢ consists of all lattice points within the axis-aligned (2n + 1) x
(2n + 1) square centered at ¢, apart from c itself. We call a butterfly lonely, crowded, or com-
fortable, depending on whether the number of butterflies in its neighborhood NN is respectively
less than, greater than, or equal to half of the number of lattice points in N.

Every minute, all lonely butterflies fly away simultaneously. This process goes on for as
long as there are any lonely butterflies. Assuming that the process eventually stops, determine

the number of comfortable butterflies at the final state.
(Bulgaria)

Answer: n? + 1.

Solution. We always identify a butterfly with the lattice point it is situated at. For two points p
and ¢, we write p > ¢ if each coordinate of p is at least the corresponding coordinate of ¢q. Let
O be the origin, and let Q be the set of initially occupied points, i.e., of all lattice points with
nonnegative coordinates. Let Ry = {(x,0): = > 0} and Ry = {(0,y): y = 0} be the sets of
the lattice points lying on the horizontal and vertical boundary rays of Q. Denote by N(a) the
neighborhood of a lattice point a.

1. Initial observations. We call a set of lattice points up-right closed if its points stay in the
set after being shifted by any lattice vector (i, j) with 7, j = 0. Whenever the butterflies form a
up-right closed set S, we have |[N(p) n S| = |[N(q) n S| for any two points p,q € S with p > q.
So, since Q is up-right closed, the set of butterflies at any moment also preserves this property.
We assume all forthcoming sets of lattice points to be up-right closed.

When speaking of some set S of lattice points, we call its points lonely, comfortable, or
crowded with respect to this set (i.e., as if the butterflies were exactly at all points of S). We
call a set S < Q stable if it contains no lonely points. In what follows, we are interested only
in those stable sets whose complements in Q are finite, because one can easily see that only a
finite number of butterflies can fly away on each minute.

If the initial set Q of butterflies contains some stable set S, then, clearly no butterfly of
this set will fly away. On the other hand, the set F of all butterflies in the end of the process
is stable. This means that F is the largest (with respect to inclusion) stable set within Q, and
we are about to describe this set.

2. A description of a final set. The following notion will be useful. Let U = {iu;, Us,. .., Uq}
be a set of d pairwise non-parallel lattice vectors, each having a positive x- and a negative
y-coordinate. Assume that they are numbered in increasing order according to slope. We now
define a U-curve to be the broken line pop; . ..pg such that pg € Rv, pq € Ry, and p,_1p; = u;
for all i = 1,2,...,m (see the Figure below to the left).

Construction of U-curve Construction of D



52 IMO 2017, Rio de Janeiro

Now, let K,, = {(4,j): 1 <i<n, —n < j < —1}. Consider all the rays emerging at O and
passing through a point from K,; number them as ry,..., 7, in increasing order according to
slope. Let A; be the farthest from O lattice point in r; N I, set k; = |r; 0 IC,|, let ¥ = O—fi,
and finally denote V = {;: 1 < i < m}; see the Figure above to the right. We will concentrate
on the V-curve dod; . .. d,,; let D be the set of all lattice points p such that p > p’ for some (not
necessarily lattice) point p’ on the V-curve. In fact, we will show that D = F.

Clearly, the V-curve is symmetric in the line y = x. Denote by D the convex hull of D.

3. We prove that the set D contains all stable sets. Let S < Q be a stable set (recall that
it is assumed to be up-right closed and to have a finite complement in Q). Denote by S its
convex hull; clearly, the vertices of S are lattice points. The boundary of S consists of two rays
(horizontal and vertical ones) along with some V,-curve for some set of lattice vectors V.

Claim 1. For every 0; € V, there is a 0 € V, co-directed with ¢ with |7*] > |9].

Proof. Let ¢ be the supporting line of S parallel to v; (i.e., ¢ contains some point of S, and
the set S lies on one side of ¢). Take any point b € £ n S and consider N(b). The line ¢ splits
the set N(b) \ ¢ into two congruent parts, one having an empty intersection with S. Hence, in
order for b not to be lonely, at least half of the set £ n N(b) (which contains 2k; points) should
lie in S. Thus, the boundary of S contains a segment ¢ N S with at least k; + 1 lattice points
(including b) on it; this segment corresponds to the required vector ¢* € V. ]

[

Proof of Claim 1 Proof of Claim 2

Claim 2. Each stable set S < Q lies in D.

Proof. To show this, it suffices to prove that the V,-curve lies in D, i.e., that all its vertices
do so. Let p’ be an arbitrary vertex of the V,-curve; p’ partitions this curve into two parts, X
(being down-right of p) and } (being up-left of p). The set V is split now into two parts: Vy
consisting of those 0; € V for which ¢;* corresponds to a segment in X, and a similar part Vy.
Notice that the V-curve consists of several segments corresponding to Vy, followed by those
corresponding to Vy. Hence there is a vertex p of the V-curve separating Vy from Vy. Claim 1
now yields that p’ > p, so p’ € D, as required. ]

Claim 2 implies that the final set F is contained in D.

4. D is stable, and its comfortable points are known. Recall the definitions of 7;; let r be the
ray complementary to ;. By our definitions, the set N(O) contains no points between the rays
r; and r;;q1, as well as between 7} and r/_ ;.

Claim 3. In the set D, all lattice points of the V-curve are comfortable.

Proof. Let p be any lattice point of the V-curve, belonging to some segment d;d;,;. Draw the
line ¢ containing this segment. Then ¢ D contains exactly k; + 1 lattice points, all of which lie
in N(p) except for p. Thus, exactly half of the points in N(p) n ¢ lie in D. It remains to show
that all points of N(p) above ¢ lie in D (recall that all the points below ¢ lack this property).
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Notice that each vector in V has one coordinate greater than n/2; thus the neighborhood
of p contains parts of at most two segments of the V-curve succeeding d;d;, 1, as well as at most
two of those preceding it.

The angles formed by these consecutive segments are obtained from those formed by 7; and
iy (with i —1 < j < i+ 2) by shifts; see the Figure below. All the points in N(p) above /
which could lie outside D lie in shifted angles between r;, 7,41 or r;-, 7’;71. But those angles,

restricted to N(p), have no lattice points due to the above remark. The claim is proved. O
Ti+2
Ti+1 it
r; ™
Ti—1

Proof of Claim 3

Claim 4. All the points of D which are not on the boundary of D are crowded.

Proof. Let p € D be such a point. If it is t&the up-right of some point p’ on the curve, then the
claim is easy: the shift of N(p') n D by p'p is still in D, and N(p) contains at least one more
point of D — either below or to the left of p. So, we may assume that p lies in a right triangle
constructed on some hypothenuse d;d; ;1. Notice here that d;, d;;1 € N(p).

Draw a line ¢ || d;d;;1 through p, and draw a vertical line h through d;; see Figure below.
Let Dy, and Dy be the parts of D lying to the left and to the right of h, respectively (points
of D n h lie in both parts).

AN !

~
~|

<

Proof of Claim 4

Notice that the vectors cﬂa, d;i1d; 49, did; 1, d;_1d;, and pd; 1 are arranged in non-increasing
order by slope. This means that Dy, shifted by cﬂ) still lies in D, as well as Dy shifted by m
As we have seen in the proof of Claim 3, these two shifts cover all points of N(p) above ¢, along
with those on ¢ to the left of p. Since N(p) contains also d; and d; 1, the point p is crowded.

L]

Thus, we have proved that D = F, and have shown that the lattice points on the V-curve
are exactly the comfortable points of D. It remains to find their number.

Recall the definition of IC,, (see Figure on the first page of the solution). Each segment d;d;.
contains k; lattice points different from d;. Taken over all 7, these points exhaust all the lattice
points in the V-curve, except for d;, and thus the number of lattice points on the V-curve is
14+ > k. On the other hand, >", k; is just the number of points in K, so it equals n?.
Hence the answer to the problem is n? + 1.
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Comment 1. The assumption that the process eventually stops is unnecessary for the problem, as
one can see that, in fact, the process stops for every n > 1. Indeed, the proof of Claims 3 and 4 do not
rely essentially on this assumption, and they together yield that the set D is stable. So, only butterflies
that are not in D may fly away, and this takes only a finite time.

This assumption has been inserted into the problem statement in order to avoid several technical
details regarding finiteness issues. It may also simplify several other arguments.

Comment 2. The description of the final set F(= D) seems to be crucial for the solution; the
Problem Selection Committee is not aware of any solution that completely avoids such a description.

On the other hand, after the set D has been defined, the further steps may be performed in several
ways. For example, in order to prove that all butterflies outside D will fly away, one may argue as
follows. (Here we will also make use of the assumption that the process eventually stops.)

First of all, notice that the process can be modified in the following manner: Each minute, exactly
one of the lonely butterflies flies away, until there are no more lonely butterflies. The modified process
necessarily stops at the same state as the initial one. Indeed, one may observe, as in solution above,
that the (unique) largest stable set is still the final set for the modified process.

Thus, in order to prove our claim, it suffices to indicate an order in which the butterflies should fly
away in the new process; if we are able to exhaust the whole set Q \ D, we are done.

Let Cy = dopdy . ..d,, be the V-curve. Take its copy C and shift it downwards so that dy comes to
some point below the origin O. Now we start moving C upwards continuously, until it comes back to its
initial position Cy. At each moment when C meets some lattice points, we convince all the butterflies at
those points to fly away in a certain order. We will now show that we always have enough arguments
for butterflies to do so, which will finish our argument for the claim..

Let C' = dyd) ... d], be a position of C when it meets some butterflies. We assume that all butterflies
under this current position of C were already convinced enough and flied away. Consider the lowest
butterfly b on C’. Let d;d; ; be the segment it lies on; we choose i so that b # d;,; (this is possible
because C as not yet reached Cp).

Draw a line ¢ containing the segment d;d}, ;. Then all the butterflies in N (b) are situated on or
above ¢; moreover, those on £ all lie on the segment d;d;; 1. But this segment now contains at most k;
butterflies (including b), since otherwise some butterfly had to occupy d; ; which is impossible by the
choice of b. Thus, b is lonely and hence may be convinced to fly away.

After b has flied away, we switch to the lowest of the remaining butterflies on C’, and so on.

Claims 3 and 4 also allow some different proofs which are not presented here.
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Geometry

Let ABCDE be a convex pentagon such that AB = BC'=CD, /ZEAB = ZBCD, and
/EDC = ZCBA. Prove that the perpendicular line from E to BC' and the line segments AC'
and BD are concurrent.

(Italy)

Solution 1. Throughout the solution, we refer to LA, /B, /C, /D, and ZF as internal
angles of the pentagon ABCDE. Let the perpendicular bisectors of AC' and BD, which pass
respectively through B and C, meet at point I. Then BD 1 CI and, similarly, AC 1 BI.
Hence AC' and BD meet at the orthocenter H of the triangle BIC, and IH 1 BC. It remains
to prove that F lies on the line I H or, equivalently, £I 1 BC.

Lines I B and IC bisect /B and ZC, respectively. Since A = IC, IB = ID, and AB =
BC = CD, the triangles TAB, ICB and IC'D are congruent. Hence /IAB = /ICB =
LC/)2 = LA/2, so the line A bisects ZA. Similarly, the line ID bisects ZD. Finally, the
line I E bisects ZFE because [ lies on all the other four internal bisectors of the angles of the
pentagon.

The sum of the internal angles in a pentagon is 540°, so

LE =540 —-2/LA +2/B.

In quadrilateral ABIFE,

/BIE =360°— ZEAB — ZABI — ZAEI = 360° — LA — %LB — %LE

1
= 360" = ZA—S/B —(270° - LA~ /B)
1
=90° + §AB =90° + ZLIBC,

which means that £I 1 BC', completing the proof.

E

Solution 2. We present another proof of the fact that E lies on line I H. Since all five internal
bisectors of ABC'DE meet at I, this pentagon has an inscribed circle with center I. Let this
circle touch side BC at T

Applying Brianchon’s theorem to the (degenerate) hexagon ABTCDE we conclude that
AC, BD and ET are concurrent, so point E also lies on line I HT', completing the proof.
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Solution 3. We present yet another proof that EI | BC. In pentagon ABCDFE, /E <
180° — LA+ /B+ /ZC+ 4D > 360°. Then LA+ /B = /C+ £ZD > 180°, so rays FA
and C'B meet at a point P, and rays BC' and ED meet at a point (). Now,

/PBA=180"- /4B =180°—- 4D = ZQDC

and, similarly, /ZPAB = ZQCD. Since AB = CD, the triangles PAB and (QC' D are congruent
with the same orientation. Moreover, PQF is isosceles with EP = EQ.

P B C Q

In Solution 1 we have proved that triangles TAB and IC'D are also congruent with the
same orientation. Then we conclude that quadrilaterals PBIA and QDIC are congruent,
which implies /P = I(). Then EI is the perpendicular bisector of P(Q and, therefore, EI |
PQ < FEI 1 BC.

Comment. Even though all three solutions used the point I, there are solutions that do not need it.
We present an outline of such a solution: if J is the incenter of AQCD (with P and @ as defined in
Solution 3), then a simple angle chasing shows that triangles CJD and BHC are congruent. Then if
S is the projection of J onto side C'D and T is the orthogonal projection of H onto side BC, one can
verify that

CD+DQ—-QC PB+BC+QC PQ

QT = QC + CT = QC + DS = QC + . . 5

so T is the midpoint of PQ, and E, H and T all lie on the perpendicular bisector of PQ.
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Let R and S be distinct points on circle §2, and let ¢ denote the tangent line to 2 at R.
Point R’ is the reflection of R with respect to S. A point [ is chosen on the smaller arc RS of
2 so that the circumcircle I' of triangle ISR’ intersects t at two different points. Denote by A
the common point of I" and ¢ that is closest to R. Line Al meets (2 again at J. Show that JR’
is tangent to I

(Luzembourg)

Solution 1. In the circles 2 and I' we have ZJRS = £JIS = ZAR'S. On the other hand,
since RA is tangent to €2, we get /SJR = ZSRA. So the triangles ARR' and SJR are similar,
and RR AR AR
RJ ~ SR SR’
The last relation, together with ZAR'S = ZJRR/, yields AASR' ~ AR'JR, hence
/SAR = ZRR'J. 1t follows that JR' is tangent to " at R'.

Solution 1 Solution 2

Solution 2. Asin Solution 1, we notice that ZJRS = £JIS = ZAR'S, so we have RJ || AR'.
Let A’ be the reflection of A about S; then ARA’R’ is a parallelogram with center S, and
hence the point .J lies on the line RA’.
From /SR'A" = /SRA = ZSJR we get that the points S, J, A’, R' are concyclic. This
proves that ZSR'J = £ZSA'J = /ZSA'R=/ZS5AR', so JR' is tangent to I" at R'.
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Let O be the circumcenter of an acute scalene triangle ABC'. Line OA intersects the
altitudes of ABC' through B and C at P and @), respectively. The altitudes meet at H. Prove
that the circumcenter of triangle PQH lies on a median of triangle ABC'.

(Ukraine)

Solution. Suppose, without loss of generality, that AB < AC. We have ZPQH = 90° —
/QAB =90°— LZOAB = %LAOB = /ACB, and similarly ZQPH = ZABC. Thus triangles
ABC and H PQ are similar. Let {2 and w be the circumcircles of ABC and H PQ), respectively.
Since ZAHP =90° - ZHAC = ZACB = ZHQP, line AH is tangent to w.

Let T be the center of w and let lines AT and BC meet at M. We will take advantage
of the similarity between ABC' and H P(Q) and the fact that AH is tangent to w at H, with
A on line PQ. Consider the corresponding tangent AS to 2, with S € BC. Then S and A
correspond to each other in AABC ~ AHPQ, and therefore ZOSM = ZOAT = ZOAM.
Hence quadrilateral SAOM is cyclic, and since the tangent line AS is perpendicular to AO,
ZOMS = 180° — ZOAS = 90°. This means that M is the orthogonal projection of O onto
BC, which is its midpoint. So T lies on median AM of triangle ABC.
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In triangle ABC', let w be the excircle opposite A. Let D, E, and F' be the points

where w is tangent to lines BC, C'A, and AB, respectively. The circle AEF intersects line BC

at P and (). Let M be the midpoint of AD. Prove that the circle M PQ is tangent to w.
(Denmark)

Solution 1. Denote by €2 the circle AEF P(), and denote by v the circle PQM. Let the line
AD meet w again at T' # D. We will show that ~ is tangent to w at T

We first prove that points P,Q, M,T are concyclic. Let A’ be the center of w. Since
A'E 1 AF and A'F 1 AF, AA’ is a diameter in €. Let N be the midpoint of DT'; from
A'D = A'T we can see that ZA'NA = 90° and therefore IV also lies on the circle 2. Now, from
the power of D with respect to the circles v and 2 we get

DT
DP-DQzDA-DNzQDM-TzDM-DT,

so P,Q, M, T are concyclic.

If EF || BC, then ABC' is isosceles and the problem is now immediate by symmetry.
Otherwise, let the tangent line to w at T" meet line BC' at point R. The tangent line segments
RD and RT have the same length, so A’R is the perpendicular bisector of DT"; since ND = NT,
N lies on this perpendicular bisector.

In right triangle A’RD, RD?* = RN-RA’ = RP-R(), in which the last equality was obtained
from the power of R with respect to Q. Hence RT? = RP - RQ, which implies that RT is also
tangent to v. Because RT is a common tangent to w and -, these two circles are tangent at T'.

Solution 2. After proving that P, ), M,T are concyclic, we finish the problem in a different
fashion. We only consider the case in which EF and BC' are not parallel. Let lines PQ and
E'F meet at point R. Since PQ) and E'F are radical axes of 2,y and w, 7, respectively, R is the
radical center of these three circles.

With respect to the circle w, the line DR is the polar of D, and the line EF' is the polar
of A. So the pole of line ADT is DR n EF = R, and therefore RT is tangent to w.

Finally, since T" belongs to v and w and R is the radical center of v, w and €2, line RT is
the radical axis of v and w, and since it is tangent to w, it is also tangent to . Because RT is
a common tangent to w and +, these two circles are tangent at 7.

Comment. In Solution 2 we defined the point R from Solution 1 in a different way.
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Solution 3. We give an alternative proof that the circles are tangent at the common point 7.
Again, we start from the fact that P, @Q, M, T are concyclic. Let point O be the midpoint of
diameter AA’. Then MO is the midline of triangle ADA’, so MO || A’D. Since A’'D 1 PQ,
MO is perpendicular to PQ as well.

Looking at circle 2, which has center O, MO 1 P() implies that MO is the perpendicular
bisector of the chord PQ. Thus M is the midpoint of arc PQ from ~, and the tangent line m
to v at M is parallel to PQ).

Consider the homothety with center 7" and ratio %. It takes D to M, and the line PQ
to the line m. Since the circle that is tangent to a line at a given point and that goes through
another given point is unique, this homothety also takes w (tangent to PQ and going through T')

to v (tangent to m and going through 7). We conclude that w and ~ are tangent at T.
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Let ABCC1B;A; be a convex hexagon such that AB = BC', and suppose that the line
segments AA;, BB, and C'C] have the same perpendicular bisector. Let the diagonals AC}
and A;C meet at D, and denote by w the circle ABC. Let w intersect the circle A; BC; again
at F # B. Prove that the lines BB; and DFE intersect on w.

(Ukraine)

Solution 1. If AA; = CCy, then the hexagon is symmetric about the line BB;; in par-
ticular the circles ABC' and A;BC, are tangent to each other. So AA; and C'C; must be
different. Since the points A and A; can be interchanged with C' and C, respectively, we may
assume AA; < CC,.

Let R be the radical center of the circles AEBC and A; EBCY, and the circumcircle of the
symmetric trapezoid ACC1Ay; that is the common point of the pairwise radical axes AC, A;C},
and BE. By the symmetry of AC and A;C1, the point R lies on the common perpendicular
bisector of AA; and CC1, which is the external bisector of ZADC.

Let F' be the second intersection of the line DR and the circle AC'D. From the power of
R with respect to the circles w and ACFD we have RB- RE = RA- RC = RD - DF, so the
points B, E, D and F are concyclic.

The line RDF is the external bisector of ZADC, so the point F bisects the arc CDA.
By AB = BC, on circle w, the point B is the midpoint of arc AEC; let M be the point
diametrically opposite to B, that is the midpoint of the opposite arc C'A of w. Notice that the
points B, ' and M lie on the perpendicular bisector of AC', so they are collinear.
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Finally, let X be the second intersection point of w and the line DE. Since BM is a diameter
in w, we have ZBXM = 90°. Moreover,

/EXM =180"— Z/MBE = 180°— ZFBE = /ZEDF,

so MX and FD are parallel. Since BX is perpendicular to M X and BB, is perpendicular
to F'D, this shows that X lies on line BB;.
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Solution 2. Define point M as the point opposite to B on circle w, and point R as the
intersection of lines AC, A;C; and BE, and show that R lies on the external bisector of
ZADC, like in the first solution.

Since B is the midpoint of the arc AEC!, the line BER is the external bisector of ZCEA.
Now we show that the internal angle bisectors of ZADC and ZC'E A meet on the segment AC.
Let the angle bisector of ZADC meet AC at S, and let the angle bisector of ZCE A, which is
line KM, meet AC at S’. By applying the angle bisector theorem to both internal and external
bisectors of ZADC and ZCFEA,

AS:CS=AD:CD=AR:CR=AE:CE=AS :.CY,

so indeed S = 5.
By ZRDS = ZSER = 90° the points R, S, D and FE are concyclic.

Now let the lines BB, and DE meet at point X. Notice that ZEFX B = ZED.S because both
BBy and DS are perpendicular to the line DR, we have that ZEDS = ZFERS in circle SRDE,
and ZERS = ZEMB because SR | BM and ER | ME. Therefore, /EXB = /FEMB, so
indeed, the point X lies on w.
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Let n > 3 be an integer. Two regular n-gons A and B are given in the plane. Prove
that the vertices of A that lie inside B or on its boundary are consecutive.
(That is, prove that there exists a line separating those vertices of A that lie inside B or on

its boundary from the other vertices of A.)
(Czech Republic)

Solution 1. In both solutions, by a polygon we always mean its interior together with its
boundary.

We start with finding a regular n-gon C which (i) is inscribed into B (that is, all vertices
of C lie on the perimeter of B); and (i7) is either a translation of A, or a homothetic image of A
with a positive factor.

Such a polygon may be constructed as follows. Let O4 and Op be the centers of A and B,
respectively, and let A be an arbitrary vertex of A. Let m be the vector co-directional
to m, with C' lying on the perimeter of B. The rotations of C' around Op by multiples
of 27t /n form the required polygon. Indeed, it is regular, inscribed into B (due to the rotational
symmetry of B), and finally the translation/homothety mapping 044 to O5C maps A to C.

Now we separate two cases.

Construction of C Case 1: Translation

Case 1: C is a translation of A by a vector v.

Denote by ¢ the translation transform by vector v. We need to prove that the vertices of C
which stay in B under ¢ are consecutive. To visualize the argument, we refer the plane to Carte-
sian coordinates so that the z-axis is co-directional with ¢. This way, the notions of right /left
and top/bottom are also introduced, according to the x- and y-coordinates, respectively.

Let Br and Bg be the top and the bottom vertices of B (if several vertices are extremal, we
take the rightmost of them). They split the perimeter of B into the right part Bg and the left
part By, (the vertices Bt and Bpg are assumed to lie in both parts); each part forms a connected
subset of the perimeter of B. So the vertices of C are also split into two parts C;, < By, and
Cr < Bg, each of which consists of consecutive vertices.

Now, all the points in Br (and hence in Cgr) move out from B under ¢, since they are
the rightmost points of B on the corresponding horizontal lines. It remains to prove that the
vertices of Cp, which stay in B under ¢ are consecutive.

For this purpose, let C;, C5, and C3 be three vertices in Cj, such that C5 is between C
and Cj5, and ¢(Cy) and t(Cs) lie in B; we need to prove that t(Cy) € B as well. Let A; = t(C;).
The line through C5 parallel to v crosses the segment C;C5 to the right of Cy; this means that
this line crosses A; A3 to the right of Ag, so Ay lies inside the triangle A;Cy A3 which is contained
in B. This yields the desired result.

Case 2: C is a homothetic image of A centered at X with factor k > 0.
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Denote by h the homothety mapping C to A. We need now to prove that the vertices of C
which stay in B after applying h are consecutive. If X € B, the claim is easy. Indeed, if £ <1,
then the vertices of A lie on the segments of the form XC' (C being a vertex of C) which lie
in B. If £ > 1, then the vertices of A lie on the extensions of such segments XC beyond C,
and almost all these extensions lie outside B. The exceptions may occur only in case when X
lies on the boundary of B, and they may cause one or two vertices of A stay on the boundary
of B. But even in this case those vertices are still consecutive.

So, from now on we assume that X ¢ B.

Now, there are two vertices Bt and Bg of BB such that B is contained in the angle / Bt X Bg;
if there are several options, say, for B, then we choose the farthest one from X if £ > 1, and the
nearest one if £ < 1. For the visualization purposes, we refer the plane to Cartesian coordinates
so that the y-axis is co-directional with BgBr, and X lies to the left of the line BrBg. Again,
the perimeter of B is split by Br and Bg into the right part Br and the left part B, and the
set, of vertices of C is split into two subsets Cr < Br and Cy, < By.,.

Case 2, X inside B Subcase 2.1: k> 1
Subcase 2.1: k > 1.

In this subcase, all points from Bg (and hence from Cr) move out from B under h, because
they are the farthest points of B on the corresponding rays emanated from X. It remains to
prove that the vertices of C;, which stay in B under h are consecutive.

Again, let C}, Cy, C3 be three vertices in Cy, such that Cs is between C and Cj3, and h(CY)
and h(C5) lie in B. Let A; = h(C;). Then the ray X5 crosses the segment C1C5 beyond Cs,
so this ray crosses A; A3 beyond As; this implies that A, lies in the triangle A;CyAs, which is
contained in B.

Subcase 2.2: k < 1

Subcase 2.2: k < 1.

This case is completely similar to the previous one. All points from By, (and hence from Cy,
move out from B under h, because they are the nearest points of B on the corresponding
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rays emanated from X. Assume that C7, Cy, and C3 are three vertices in Cgr such that Cy
lies between C; and Cj5, and h(C}) and h(Cs) lie in B; let A; = h(C;). Then A, lies on
the segment X (5, and the segments X A; and A;Ajz cross each other. Thus A, lies in the
triangle A;C5Ajz, which is contained in B.

Comment 1. In fact, Case 1 can be reduced to Case 2 via the following argument.

Agsume that A and C are congruent. Apply to A a homothety centered at Op with a factor slightly
smaller than 1 to obtain a polygon A’. With appropriately chosen factor, the vertices of A which were
outside/inside B stay outside/inside it, so it suffices to prove our claim for A’ instead of A. And now,
the polygon A’ is a homothetic image of C, so the arguments from Case 2 apply.

Comment 2. After the polygon C has been found, the rest of the solution uses only the convexity of
the polygons, instead of regularity. Thus, it proves a more general statement:

Assume that A, B, and C are three convex polygons in the plane such that C is inscribed into B,
and A can be obtained from it via either translation or positive homothety. Then the vertices of A that
lie inside B or on its boundary are consecutive.

Solution 2. Let O4 and Op be the centers of A and B, respectively. Denote [n] = {1,2,...,n}.
We start with introducing appropriate enumerations and notations. Enumerate the sidelines
of B clockwise as (1, (s, ..., {,. Denote by H; the half-plane of ¢; that contains B (#; is assumed
to contain ¢;); by B; the midpoint of the side belonging to ¢;; and finally denote E) = m.
(As usual, the numbering is cyclic modulo n, so ¢, ; = ¢; etc.)
Now, choose a vertex A; of A such that the vector 0,47; points “mostly outside H;”;
strictly speaking, this means that the scalar product <O,47; , b_1)> is minimal. Starting from A,

enumerate the vertices of A clockwise as Ay, As, ..., A,; by the rotational symmetry, the choice
of A; yields that the vector O4A; points “mostly outside H,”, i.e.,
— = L = —>
(OpA;, by = IIel[lri<OAAj, bi ). (1)
j€[n

Enumerations and notations

We intend to reformulate the problem in more combinatorial terms, for which purpose we
introduce the following notion. Say that a subset I < [n] is connected if the elements of this
set are consecutive in the cyclic order (in other words, if we join each ¢ with ¢ +1 mod n by an
edge, this subset is connected in the usual graph sense). Clearly, the union of two connected
subsets sharing at least one element is connected too. Next, for any half-plane H the indices
of vertices of, say, A that lie in H form a connected set.

To access the problem, we denote
M ={je[n]: A; ¢ B}, M; ={je[n]: A; ¢ H;} forie[n].

We need to prove that [n]\ M is connected, which is equivalent to M being connected. On
the other hand, since B = ﬂie[n] ‘H;, we have M = Ul.e[n] M;, where the sets M, are easier to
investigate. We will utilize the following properties of these sets; the first one holds by the
definition of M;, along with the above remark.
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The sets M;

Property 1: Fach set M; is connected. O
Property 2: If M; is nonempty, then i € M,;.

Proof. Indeed, we have

The right-hand part of the last inequality does not depend on j. Therefore, if some j lies in M;,
then by (1) so does i. O

In view of Property 2, it is useful to define the set

M' ={i€e[n]:ie M;} = {i€[n]: M; # &}.

Property 3: The set M’ is connected.

Proof. To prove this property, we proceed on with the investigation started in (2) to write
1€ M/ = Az € Mz = <BZAZ,E)> <0 = <OBOA,E)> < <OBBZ,E)> + <AZOA,E)>

The right-hand part of the obtained inequality does not depend on 7, due to the rotational
symmetry; denote its constant value by pu. Thus, ¢ € M’ if and only if (OO, E)> < . This
condition is in turn equivalent to the fact that B; lies in a certain (open) half-plane whose
boundary line is orthogonal to OO 4; thus, it defines a connected set. ]

Now we can finish the solution. Since M’ < M, we have

M=) M=Mu|] M,
i€ln]

i€[n]

so M can be obtained from M’ by adding all the sets M; one by one. All these sets are
connected, and each nonempty M; contains an element of M’ (namely, 7). Thus their union is
also connected.

Comment 3. Here we present a way in which one can come up with a solution like the one above.

Assume, for sake of simplicity, that O4 lies inside B. Let us first put onto the plane a very small
regular n-gon A’ centered at O4 and aligned with A; all its vertices lie inside B. Now we start blowing
it up, looking at the order in which the vertices leave B. To go out of B, a vertex should cross a certain
side of B (which is hard to describe), or, equivalently, to cross at least one sideline of B — and this
event is easier to describe. Indeed, the first vertex of A’ to cross ¢; is the vertex A (corresponding to A4;
in A); more generally, the vertices A;- cross #; in such an order that the scalar product <m, E} does
not increase. For different indices ¢, these orders are just cyclic shifts of each other; and this provides
some intuition for the notions and claims from Solution 2.
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A convex quadrilateral ABCD has an inscribed circle with center I. Let I, I, I,
and I; be the incenters of the triangles DAB, ABC, BCD, and CDA, respectively. Suppose
that the common external tangents of the circles Al I; and C'I,I; meet at X, and the common
external tangents of the circles BI,I. and DI,I. meet at Y. Prove that ZX1Y = 90°.
(Kazakhstan)

Solution. Denote by w,, wy, w. and wy the circles Al 1y, Bl 1., Clyl;, and DI,I., let their
centers be O,, Oy, O. and Oy, and let their radii be r,, 1, 7. and rg, respectively.
Claim 1. Iy1; 1 AC and I,I. 1 BD.

Proof. Let the incircles of triangles ABC and AC'D be tangent to the line AC at T and T”,
respectively. (See the figure to the left.) We have AT = W in triangle ABC', AT =
AD+ACCD iy triangle ACD, and AB — BC = AD — CD in quadrilateral ABCD, so

_ AC+AB-BC AC+AD - CD

AT = AT'.
2 2
This shows T = T". As an immediate consequence, I,I; 1 AC.
The second statement can be shown analogously. O

D

1y

T/

Claim 2. The points O,, Oy, O, and Oy lie on the lines AI, BI, CI and DI, respectively.

Proof. By symmetry it suffices to prove the claim for O,. (See the figure to the right above.)

Notice first that the incircles of triangles ABC' and AC'D can be obtained from the incircle of
the quadrilateral ABC'D with homothety centers B and D, respectively, and homothety factors
less than 1, therefore the points I, and I; lie on the line segments BI and DI, respectively.

As is well-known, in every triangle the altitude and the diameter of the circumcircle starting
from the same vertex are symmetric about the angle bisector. By Claim 1, in triangle Al;[,,
the segment AT is the altitude starting from A. Since the foot T lies inside the segment
114, the circumcenter O, of triangle Al;I, lies in the angle domain [, Al; in such a way that
L ILAT = Z0,Al,. The points I, and I; are the incenters of triangles ABC' and ACD, so the
lines Al, and Al; bisect the angles ZBAC and ZC'AD, respectively. Then

LOGAD = LO Al + L1,AD = LI,AT + /1,AD = Y/ BAC + L/ CAD = 1/ BAD,

so O, lies on the angle bisector of ZBAD, that is, on line Al. OJ

The point X is the external similitude center of w, and w,; let U be their internal similitude
center. The points O, and O, lie on the perpendicular bisector of the common chord 1,1, of w,
and w,., and the two similitude centers X and U lie on the same line; by Claim 2, that line is
parallel to AC.
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From the similarity of the circles w, and w,, from O,I, = O,I; = O,A = r, and O.I, =
O.ly = 0.C =r., and from AC || O,O. we can see that

0, X OU 1, Oy, O,y O,A O,

0.X 00U r., OJd, 0.; 0, 0J

So the points X, U, I, I, I lie on the Apollonius circle of the points O,, O, with ratio r, : .. In
this Apollonius circle XU is a diameter, and the lines IU and I X are respectively the internal
and external bisectors of 20,10, = Z AIC, according to the angle bisector theorem. Moreover,
in the Apollonius circle the diameter U X is the perpendicular bisector of I1;, so the lines 1.X
and U are the internal and external bisectors of Z[,I1; = ZBID, respectively.

Repeating the same argument for the points B, D instead of A, C, we get that the line 1Y is
the internal bisector of ZAIC and the external bisector of ZBID. Therefore, the lines /X and
1Y respectively are the internal and external bisectors of ZBID, so they are perpendicular.

Comment. In fact the points O,, Op, O, and Oy lie on the line segments AI, BI, CI and DI,
respectively. For the point O, this can be shown for example by £1;,0,A + LAO.I, = (180° —
2/0,A14)+(180°—2£1,A0,,) = 360°—£LBAD = LZADI+/DIA+/AIB+/ZIBA > LI;JA+ /Al

The solution also shows that the line Y passes through the point U, and analogously, X passes
through the internal similitude center of w; and wy.


http://mathworld.wolfram.com/ApolloniusCircle.html
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There are 2017 mutually external circles drawn on a blackboard, such that no two are
tangent and no three share a common tangent. A tangent segment is a line segment that is
a common tangent to two circles, starting at one tangent point and ending at the other one.
Luciano is drawing tangent segments on the blackboard, one at a time, so that no tangent
segment intersects any other circles or previously drawn tangent segments. Luciano keeps
drawing tangent segments until no more can be drawn. Find all possible numbers of tangent

segments when he stops drawing.
(Australia)

Answer: If there were n circles, there would always be exactly 3(n — 1) segments; so the only
possible answer is 3 - 2017 — 3 = 6048.

Solution 1. First, consider a particular arrangement of circles Cy, Cy, ..., C,, where all the
centers are aligned and each C; is eclipsed from the other circles by its neighbors — for example,
taking C; with center (i?,0) and radius 7/2 works. Then the only tangent segments that can
be drawn are between adjacent circles C; and Cj, 1, and exactly three segments can be drawn
for each pair. So Luciano will draw exactly 3(n — 1) segments in this case.

For the general case, start from a final configuration (that is, an arrangement of circles
and segments in which no further segments can be drawn). The idea of the solution is to
continuously resize and move the circles around the plane, one by one (in particular, making
sure we never have 4 circles with a common tangent line), and show that the number of segments
drawn remains constant as the picture changes. This way, we can reduce any circle/segment
configuration to the particular one mentioned above, and the final number of segments must
remain at 3n — 3.

Some preliminary considerations: look at all possible tangent segments joining any two
circles. A segment that is tangent to a circle A can do so in two possible orientations — it
may come out of A in clockwise or counterclockwise orientation. Two segments touching the
same circle with the same orientation will never intersect each other. Each pair (A, B) of circles
has 4 choices of tangent segments, which can be identified by their orientations — for example,
(A+, B—) would be the segment which comes out of A in clockwise orientation and comes out of
B in counterclockwise orientation. In total, we have 2n(n — 1) possible segments, disregarding
intersections.

Now we pick a circle C' and start to continuously move and resize it, maintaining all existing
tangent segments according to their identifications, including those involving C. We can keep
our choice of tangent segments until the configuration reaches a transition. We lose nothing if
we assume that C'is kept at least € units away from any other circle, where ¢ is a positive, fixed
constant; therefore at a transition either: (1) a currently drawn tangent segment ¢ suddenly
becomes obstructed; or (2) a currently absent tangent segment ¢ suddenly becomes unobstructed
and available.

Claim. A transition can only occur when three circles C, Cy, C'5 are tangent to a common line /¢
containing ¢, in a way such that the three tangent segments lying on ¢ (joining the three circles
pairwise) are not obstructed by any other circles or tangent segments (other than C;, Cy, C3).

Proof. Since (2) is effectively the reverse of (1), it suffices to prove the claim for (1). Suppose ¢
has suddenly become obstructed, and let us consider two cases.
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Case 1: t becomes obstructed by a circle

<> <>

Then the new circle becomes the third circle tangent to ¢, and no other circles or tangent
segments are obstructing ¢.

Case 2: t becomes obstructed by another tangent segment t'

When two segments ¢ and ¢’ first intersect each other, they must do so at a vertex of one of
them. But if a vertex of ¢ first crossed an interior point of ¢, the circle associated to this vertex
was already blocking ¢ (absurd), or is about to (we already took care of this in case 1). So we
only have to analyze the possibility of ¢ and ¢’ suddenly having a common vertex. However,
if that happens, this vertex must belong to a single circle (remember we are keeping different
circles at least ¢ units apart from each other throughout the moving/resizing process), and
therefore they must have different orientations with respect to that circle.

Thus, at the transition moment, both ¢ and ¢’ are tangent to the same circle at a common
point, that is, they must be on the same line ¢ and hence we again have three circles simultane-
ously tangent to £. Also no other circles or tangent segments are obstructing ¢ or ¢ (otherwise,
they would have disappeared before this transition). O

Next, we focus on the maximality of a configuration immediately before and after a tran-
sition, where three circles share a common tangent line ¢. Let the three circles be C, Cs, Cj3,
ordered by their tangent points. The only possibly affected segments are the ones lying on
¢, namely tio, to3 and ty3. Since C5 is in the middle, ¢15 and to3 must have different orienta-
tions with respect to Cy. For C1, t12 and t;3 must have the same orientation, while for Cjs, ti3
and t93 must have the same orientation. The figure below summarizes the situation, showing
alternative positions for C} (namely, C; and C]) and for C3 (C5 and CY).
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Now perturb the diagram slightly so the three circles no longer have a common tangent,
while preserving the definition of ¢15, to3 and ¢13 according to their identifications. First note
that no other circles or tangent segments can obstruct any of these segments. Also recall that
tangent segments joining the same circle at the same orientation will never obstruct each other.

The availability of the tangent segments can now be checked using simple diagrams.

Case 1: ti3 passes through Co

/

\
03\\_’/

In this case, t13 is not available, but both t15 and .3 are.

Case 2: t13 does not pass through Cs

C

- — — — = = = — — — — = = = = = = = =
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Now t;3 is available, but ¢, and t,3 obstruct each other, so only one can be drawn.
In any case, exactly 2 out of these 3 segments can be drawn. Thus the maximal number of
segments remains constant as we move or resize the circles, and we are done.

Solution 2. First note that all tangent segments lying on the boundary of the convex hull of
the circles are always drawn since they do not intersect anything else. Now in the final picture,
aside from the n circles, the blackboard is divided into regions. We can consider the picture
as a plane (multi-)graph G in which the circles are the vertices and the tangent segments are
the edges. The idea of this solution is to find a relation between the number of edges and the
number of regions in G; then, once we prove that GG is connected, we can use Euler’s formula
to finish the problem.

The boundary of each region consists of 1 or more (for now) simple closed curves, each
made of arcs and tangent segments. The segment and the arc might meet smoothly (as in S;,
i=1,2,...,6 in the figure below) or not (as in Py, P, P3, Py; call such points sharp corners of
the boundary). In other words, if a person walks along the border, her direction would suddenly
turn an angle of 7 at a sharp corner.
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P

P

Claim 1. The outer boundary B; of any internal region has at least 3 sharp corners.

Proof. Let a person walk one lap along B; in the counterclockwise orientation. As she does
so, she will turn clockwise as she moves along the circle arcs, and not turn at all when moving
along the lines. On the other hand, her total rotation after one lap is 27 in the counterclockwise
direction! Where could she be turning counterclockwise? She can only do so at sharp corners,
and, even then, she turns only an angle of 7 there. But two sharp corners are not enough, since
at least one arc must be present—so she must have gone through at least 3 sharp corners. [

Claim 2. FEach internal region is simply connected, that is, has only one boundary curve.

Proof. Suppose, by contradiction, that some region has an outer boundary B; and inner boun-
daries By, Bs, ..., B, (m = 2). Let P; be one of the sharp corners of Bj.

Now consider a car starting at P, and traveling counterclockwise along B;. It starts in
reverse, i.e., it is initially facing the corner P;. Due to the tangent conditions, the car may travel
in a way so that its orientation only changes when it is moving along an arc. In particular, this
means the car will sometimes travel forward. For example, if the car approaches a sharp corner
when driving in reverse, it would continue travel forward after the corner, instead of making an
immediate half-turn. This way, the orientation of the car only changes in a clockwise direction
since the car always travels clockwise around each arc.

Now imagine there is a laser pointer at the front of the car, pointing directly ahead. Initially,
the laser endpoint hits P;, but, as soon as the car hits an arc, the endpoint moves clockwise
around Bj. In fact, the laser endpoint must move continuously along B;! Indeed, if the
endpoint ever jumped (within By, or from B; to one of the inner boundaries), at the moment
of the jump the interrupted laser would be a drawable tangent segment that Luciano missed
(see figure below for an example).
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Now, let P, and P; be the next two sharp corners the car goes through, after P, (the
previous lemma assures their existence). At P, the car starts moving forward, and at Py it will
start to move in reverse again. So, at Pj, the laser endpoint is at Pj itself. So while the car
moved counterclockwise between P; and P;, the laser endpoint moved clockwise between P,
and P3;. That means the laser beam itself scanned the whole region within By, and it should
have crossed some of the inner boundaries. ]

Claim 3. FEach region has exactly 3 sharp corners.

Proof. Consider again the car of the previous claim, with its laser still firmly attached to its
front, traveling the same way as before and going through the same consecutive sharp corners
P, P, and P3. As we have seen, as the car goes counterclockwise from P; to P;, the laser
endpoint goes clockwise from P; to Pj, so together they cover the whole boundary. If there
were a fourth sharp corner Py, at some moment the laser endpoint would pass through it. But,
since P, is a sharp corner, this means the car must be on the extension of a tangent segment
going through P,. Since the car is not on that segment itself (the car never goes through P;),
we would have 3 circles with a common tangent line, which is not allowed.

0

We are now ready to finish the solution. Let r be the number of internal regions, and s be the
number of tangent segments. Since each tangent segment contributes exactly 2 sharp corners
to the diagram, and each region has exactly 3 sharp corners, we must have 2s = 3r. Since the
graph corresponding to the diagram is connected, we can use Euler’s formula n —s+7 = 1 and
find s =3n —3 and r = 2n — 2.



Shortlisted problems — solutions 75

Number Theory

The sequence ag, ay, as, . .. of positive integers satisfies
N if \/a, is an integer
Up41 =

) for every n = 0.
a, + 3, otherwise

Determine all values of ag > 1 for which there is at least one number a such that a, = a for
infinitely many values of n.

(South Africa)

Answer: All positive multiples of 3.

Solution. Since the value of a,_ 1 only depends on the value of a,, if a,, = a,, for two different
indices n and m, then the sequence is eventually periodic. So we look for the values of aq for
which the sequence is eventually periodic.

Claim 1. 1If a,, = —1 (mod 3), then, for all m > n, a,, is not a perfect square. It follows that
the sequence is eventually strictly increasing, so it is not eventually periodic.

Proof. A square cannot be congruent to —1 modulo 3, so a,, = —1 (mod 3) implies that a, is
not a square, therefore a, 1 = a, + 3 > a,. As a consequence, a,.; = a, = —1 (mod 3), so
an41 is not a square either. By repeating the argument, we prove that, from a,, on, all terms of
the sequence are not perfect squares and are greater than their predecessors, which completes
the proof. O

Claim 2. 1f a,, # —1 (mod 3) and a,, > 9 then there is an index m > n such that a,, < a,.

Proof. Let t2 be the largest perfect square which is less than a,. Since a, > 9, t is at least
3. The first square in the sequence a,,a, + 3,a, + 6,... will be (t + 1)%, (t + 2)? or (¢t + 3)?,
therefore there is an index m > n such that a,, <t + 3 <t < a,, as claimed. ]

Claim 3. If a,, = 0 (mod 3), then there is an index m > n such that a,, = 3.

Proof. First we notice that, by the definition of the sequence, a multiple of 3 is always followed
by another multiple of 3. If a,, € {3, 6, 9} the sequence will eventually follow the periodic pattern
3,6,9,3,6,9,.... If a, > 9, let j be an index such that a; is equal to the minimum value of
the set {an41,an12,...} . We must have a; < 9, otherwise we could apply Claim 2 to a; and
get a contradiction on the minimality hypothesis. It follows that a; € {3,6,9}, and the proof is

complete. ]
Claim 4. If a,, =1 (mod 3), then there is an index m > n such that a,, = —1 (mod 3).

Proof. In the sequence, 4 is always followed by 2 = —1 (mod 3), so the claim is true for a,, = 4.
If a, = 7, the next terms will be 10,13,16,4,2,... and the claim is also true. For a,, > 10, we

again take an index j > n such that a; is equal to the minimum value of the set {a,+1, @n+2, . .. },
which by the definition of the sequence consists of non-multiples of 3. Suppose a; =1 (mod 3).
Then we must have a; < 9 by Claim 2 and the minimality of a;. It follows that a; € {4, 7},
SO @, = 2 < a; for some m > j, contradicting the minimality of a;. Therefore, we must have
a; = —1 (mod 3). ]

It follows from the previous claims that if aq is a multiple of 3 the sequence will eventually
reach the periodic pattern 3,6,9,3,6,9,...; if aqg = —1 (mod 3) the sequence will be strictly
increasing; and if ap = 1 (mod 3) the sequence will be eventually strictly increasing.

So the sequence will be eventually periodic if, and only if, ay is a multiple of 3.
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Let p = 2 be a prime number. Eduardo and Fernando play the following game making
moves alternately: in each move, the current player chooses an index 7 in the set {0,1,...,p—1}
that was not chosen before by either of the two players and then chooses an element a; of the
set {0,1,2,3,4,5,6,7,8,9}. Eduardo has the first move. The game ends after all the indices
i€{0,1,...,p— 1} have been chosen. Then the following number is computed:

p—1
M=ag+10-ay+ -+ 10" a, = Y a;- 107,
=0

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to
prevent this.
Prove that Eduardo has a winning strategy.
(Morocco)

Solution. We say that a player makes the move (i, a;) if he chooses the index ¢ and then the
element a; of the set {0,1,2,3,4,5,6,7,8,9} in this move.

If p =2 or p =5 then Eduardo chooses ¢ = 0 and ag = 0 in the first move, and wins, since,
independently of the next moves, M will be a multiple of 10.

Now assume that the prime number p does not belong to {2,5}. Eduardo chooses i = p—1
and a, ; = 0 in the first move. By Fermat’s Little Theorem, (107~5/2)2 = 10~ = 1 (mod p),
so p | (10P=1/2)2 — 1 = (10P~Y/2 4 1)(10~Y/2 — 1). Since p is prime, either p | 10°~V/2 41 or
p | 10P=Y/2 — 1. Thus we have two cases:

Case a: 10°~V/2 = —1 (mod p)

In this case, for each move (i, a;) of Fernando, Eduardo immediately makes the move (j, a;) =
(i+55%,a;), if 0 <@ < 232, or (j,a5) = (i—B5%, @), if 251 <0 < p—2. We will have 10/ = —10°
(mod p), and so a; - 10? = a; - 10/ = —a, - 10° (mod p). Notice that this move by Eduardo
is always possible. Indeed, immediately before a move by Fernando, for any set of the type
{r,r + (p—1)/2} with 0 < r < (p — 3)/2, either no element of this set was chosen as an index
by the players in the previous moves or else both elements of this set were chosen as indices by
the players in the previous moves. Therefore, after each of his moves, Eduardo always makes
the sum of the numbers a; - 10¥ corresponding to the already chosen pairs (k, ay) divisible by

p, and thus wins the game.
Case b: 10P~1/2 =1 (mod p)
In this case, for each move (i, a;) of Fernando, Eduardo immediately makes the move (j, a;) =

(i+p7_1,9—ai), if0<i<”—;3, or (j,a;) = (i—pT_l,Q—ai), ifp%1 < i < p—2. The same

argument as above shows that Eduardo can always make such move. We will have 10/ = 10¢
(mod p), and so a; - 107 + a; - 10° = (a; + a;) - 10° = 9- 10" (mod p). Therefore, at the end of
the game, the sum of all terms a;, - 10* will be congruent to

p—3
2
$19-100 =102 —1=0 (mod p),
=0

and Eduardo wins the game.
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Determine all integers n > 2 with the following property: for any integers a,as, ..., a,
whose sum is not divisible by n, there exists an index 1 < ¢ < n such that none of the numbers

iy Qj + Qjg1y - -5 A + Qg1 + 00+ Qi1

is divisible by n. (We let a; = a;_,, when i > n.)
(Thailand)

Answer: These integers are exactly the prime numbers.

Solution. Let us first show that, if n = ab, with a,b > 2 integers, then the property in the
statement of the problem does not hold. Indeed, in this case, let a;, = a for 1 <k <n —1 and
a, = 0. The sum a; + as + --- + a, = a- (n — 1) is not divisible by n. Let ¢ with 1 <i < n be
an arbitrary index. Taking j =bif 1 <i<n—b,and j =b+1ifn—b <7 <n, we have

a+ a1+ -+ a4j1=a-b=n=0 (modn).

It follows that the given example is indeed a counterexample to the property of the statement.

Now let n be a prime number. Suppose by contradiction that the property in the statement
of the problem does not hold. Then there are integers aq, as, ..., a, whose sum is not divisible
by n such that for each i, 1 < i < n, there is j, 1 < j < n, for which the number a; + a;1 +
-+ 4+ a;yj—1 is divisible by n. Notice that, in any such case, we should have 1 < j < n — 1,
since a; + as + - - - + a, is not divisible by n. So we may construct recursively a finite sequence
of integers 0 = 15 < 11 <1y < --- < i, With 15,7 — 25 < n —1for 0 < s < n — 1 such that, for
0<s<n-—1,

Q41+ Qigpo+ -+ a;,,, =0 (mod n)

(where we take indices modulo n). Indeed, for 0 < s < n, we apply the previous observation
to i =iz + 1 in order to define i, =75 + J.

In the sequence of n + 1 indices g, 1, %9, ...,%,, by the pigeonhole principle, we have two
distinct elements which are congruent modulo n. So there are indices r, s with 0 <r <s<n
such that iy =4, (mod n) and

s—1
Q41+ Qjq + -+ Q;, = Z(aiﬁl + Qi;42 + -+ aml) =0 (mod n)
j=r

Since i5 =i, (mod n), we have iy — i, = k- n for some positive integer k, and, since ;11 —i; <
n—1for0<j<n-—1, wehavei; —i, < (n—1)-n,so k<n—1. But in this case

Qs+ Qg0+ +a, =k-(ag +ay+--+ay,)

cannot be a multiple of n, since n is prime and neither k nor a; + as + - - - + a, is a multiple
of n. A contradiction.
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Call a rational number short if it has finitely many digits in its decimal expansion.
For a positive integer m, we say that a positive integer t is m-tastic if there exists a number

1 t k
ce {1,2,3,...,2017} such that
c-m m

s short, and such that —
C .
1 <k <t. Let S(m) be the set of m-tastic numbers. Consider S(m) for m = 1,2,.... What is
the maximum number of elements in S(m)?

is not short for any

(Turkey)
Answer: 807.
Solution. First notice that x € Q is short if and only if there are exponents a,b > 0 such that

2¢.5%. x e Z. In fact, if x is short, then z = 1o for some k and we can take a = b = k; on the

other hand, if 2% -5° -2 = ¢ € Z then z = %, so x is short.

If m =2 5% s, with ged(s, 10) = 1, then % is short if and only if s divides 10 — 1. So
we may (and will) suppose without loss of generality that ged(m, 10) = 1. Define

C={1<c<2017: ged(c, 10) = 1}.

The m-tastic numbers are then precisely the smallest exponents ¢ > 0 such that 10! =
(mod c¢m) for some integer ¢ € C, that is, the set of orders of 10 modulo cm. In other words,

S(m) = {ord.,(10): ce C}.

Since there are 4 - 201 + 3 = 807 numbers ¢ with 1 < ¢ < 2017 and ged(e, 10) = 1, namely
those such that ¢ =1,3,7,9 (mod 10),

|S(m)| < |C] = 807.
Now we find m such that |S(m)| = 807. Let
P = {1 <p<2017: pis prime, p # 2,5}

and choose a positive integer a such that every p € P divides 10 — 1 (e.g. « = ¢(T'), T being
the product of all primes in P), and let m = 10% — 1.

Claim. For every c € C', we have
orden,(10) = ca.

As an immediate consequence, this implies |S(m)| = |C| = 807, finishing the problem.
Proof. Obviously ord,,(10) = a. Let ¢t = ord,,,(10). Then

em | 100—1 — m|10'—-1 — alt

Hence t = ko for some k € Z~,. We will show that k£ = c.
Denote by v,(n) the number of prime factors p in n, that is, the maximum exponent f for
which p? | n. For every ¢ > 1 and p € P, the Lifting the Exponent Lemma, provides

V(10 — 1) = 15, ((10%)" = 1) = 15,(10% = 1) + 13, (€) = vy (m) + 1, (0),
SO
em | 10" — 1 <= VYpe P; yy(em) < p,(10F — 1)
<~ Vpe P; v,(m) + v,(c) < vp(m) + vp(k)

> Vpe P; y(c) <vy(k)

— c | k.

The first such k is k = ¢, so ord.,(10) = ca. O
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Comment. The Lifting the Exponent Lemma states that, for any odd prime p, any integers a,b
coprime with p such that p | @ — b, and any positive integer exponent n,

vp(a® = ") = vp(a —b) + vp(n),

and, for p = 2,
va(a™ — b") = va(a® — b%) + vp(n) — 1.

Both claims can be proved by induction on n.
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Find all pairs (p, q) of prime numbers with p > ¢ for which the number

(p+q)P(p— g -1
(p+qP-ip—q)rti—1

is an integer.

(Japan)
Answer: The only such pair is (3, 2).
Solution. Let M = (p + q)? %(p — q)P*? — 1, which is relatively prime with both p + ¢ and

p — q. Denote by (p — ¢q)~! the multiplicative inverse of (p — ¢) modulo M.
By eliminating the term —1 in the numerator,

Il

(p+a)P (p—q) "1
q

(
((p+q)-(p—

Il

+¢)P (p—q)’"" =1 (mod M)
—q

(p
(p—¢)* (mod M) (1)
1

Il

p+q)*
2q
0)") (mod M). (2)
Case 1: ¢ = 5.
Consider an arbitrary prime divisor r of M. Notice that M is odd, so r = 3. By (2), the
multiplicative order of ((p +q)-(p— q)*l) modulo r is a divisor of the exponent 2¢ in (2), so

it can be 1, 2, q or 2gq.

By Fermat’s theorem, the order divides r — 1. So, if the order is g or 2¢ then » =1 (mod gq).
If the order is 1 or 2 then 7 | (p+¢)* — (p — q)? = 4pq, so 7 = p or r = q. The case r = p is not
possible, because, by applying Fermat’s theorem,

M={@p+q) p—q" " —1=¢" (""" 1= (") -1=¢-1=(¢g+1)(¢—1) (mod p)

and the last factors ¢ — 1 and ¢ + 1 are less than p and thus p { M. Hence, all prime divisors
of M are either g or of the form kq + 1; it follows that all positive divisors of M are congruent
to 0 or 1 modulo gq.

Now notice that

M = ((er(J)%(p—Q)PTH - 1) <(p+q)%(p—q)%q + 1)

is the product of two consecutive positive odd numbers; both should be congruent to 0 or 1
modulo ¢. But this is impossible by the assumption ¢ > 5. So, there is no solution in Case 1.
Case 2: q = 2.

By (1), we have M | (p+¢)* — (p—¢)** = (p +2)* = (p — 2)*, s0

(p+2)Pp—2"-1=M<(p+2)'-(p-2)'<(p+2)*-1,
(p+2)P%(p—2P2 < 1.

If p > 7 then the left-hand side is obviously greater than 1. For p = 5 we have
(p+2)P75(p — 2)P™2 = 771 . 37 which is also too large.
There remains only one candidate, p = 3, which provides a solution:

p+af'p—qP?—1 5 -1'—1 3124

- = = T81.
(p+qPi(p—qpte—1 5.15-1 4 8

So in Case 2 the only solution is (p,q) = (3,2).
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Case 3: q = 3.
Similarly to Case 2, we have

M| (p+a)*—(p—q)* =64 ((1%3)6 - <1%3)6) .

Since M is odd, we conclude that
6 6
-3
M | pt3\" (p—-3
2 2

6 6 6
oo (2 (<2

64(p + 3)P(p — 3)P" < 1.

and

If p = 11 then the left-hand side is obviously greater than 1. If p = 7 then the left-hand side is
64 -1072 -4 > 1. If p = 5 then the left-hand side is 64 - 8% . 2% = 22 > 1. Therefore, there is
no solution in Case 3.
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Find the smallest positive integer n, or show that no such n exists, with the following
property: there are infinitely many distinct n-tuples of positive rational numbers (aq, as, . . ., a,)
such that both

ay +as + -+ a, and —+ =+t —
are integers.
(Singapore)
Answer: n = 3.

Solution 1. Forn =1, a; € Z-( and i € Z~g if and only if a; = 1. Next we show that
(i) There are finitely many (z,y) € Q% satisfying x +y € Z and + + % €7
Write z = ¢ and y = § with a,b, ¢, d € Z-( and ged(a, b) = ged(c,d) = 1. Then z +y e Z
and % + i € Z is equivalent to the two divisibility conditions

bd | ad + be (1) and ac | ad + be (2)

Condition (1) implies that d | ad + bc <= d | bc <= d | b since ged(c,d) = 1. Still
from (1) we get b | ad + bc < b|ad <= b d since ged(a,b) = 1. From b | d and
d | b we have b = d.

An analogous reasoning with condition (2) shows that a = c. Hence z = § = § =y, i.e,
the problem amounts to finding all x € Q- such that 2x € Z-, and % € Z-q. Letting
n = 2x € Z-g, we have that % € Luy < % € Z-yg < n =1, 2 or 4, and there are

finitely many solutions, namely (z,y) = (3, 1), (1,1) or (2,2).

(ii) There are infinitely many triples (z,vy, z) € Q% such that v +y+ 2 € Z and % + % + % € Z.
We will look for triples such that z + y + z = 1, so we may write them in the form

w2 = (

We want these to satisfy

a b c
a+b+ca+b+ca+b+c

) with a, b, c € Z~

1 1 1 a+b+c a+b+c a+bdb+c b+c¢ a+c a+bd
e g + + €7 + + €

Z
x Yy =z a b c a b c

Fixing a = 1, it suffices to find infinitely many pairs (b, ¢) € Z2, such that

1 1 ¢ b

I 4423 — PP+ —3bc+b+c=0 ()

b ¢ b ¢
To show that equation (*) has infinitely many solutions, we use Vieta jumping (also known
as root flipping): starting with b = 2, ¢ = 3, the following algorithm generates infinitely
many solutions. Let ¢ > b, and view (*) as a quadratic equation in b for ¢ fixed:

¥ —(Bc—1)-b+(*+¢)=0 (%)

Then there exists another root by € Z of (++) which satisfies b+by = 3c—1 and b-by = *+c.
Since ¢ > b by assumption,

A +c A +c

>
b c

Hence from the solution (b, c) we obtain another one (¢, by) with by > ¢, and we can then
“jump” again, this time with ¢ as the “variable” in the quadratic (). This algorithm will
generate an infinite sequence of distinct solutions, whose first terms are

(2,3), (3,6), (6,14), (14,35), (35,90), (90,234), (234,611), (611,1598), (1598,4182), ...

by =

> C
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Comment. Although not needed for solving this problem, we may also explicitly solve the recursion
given by the Vieta jumping. Define the sequence (x,) as follows:

xo=2, x1 =3 and Tpio = 3Tps1 —Xp — Lforn =0
Then the triple
1 Tn Tn+1
(2,y,2) = : ;
1+fL’n+fL'n+1 1+fL’n+fL'n+1 1+fL’n+fL'n+1

satisfies the problem conditions for all n € N. It is easy to show that x,, = F5,,.1 + 1, where F}, denotes
the n-th term of the Fibonacci sequence (Fy = 0, Fy = 1, and F,19 = F,,11 + F, for n = 0).

Solution 2. Call the n-tuples (ay,as,...,a,) € Q2 satisfying the conditions of the problem
statement good, and those for which

1 1 1
f(al,...,an)dif(al+a2+...+an) (—+_+...+_>
ay as A,

is an integer pretty. Then good n-tuples are pretty, and if (by,...,b,) is pretty then

( by by b,
bi+by+-+b,) by+ba+--+b, bbbt +Dy

is good since the sum of its components is 1, and the sum of the reciprocals of its components
equals f(by,...,b,). We declare pretty n-tuples proportional to each other equivalent since they
are precisely those which give rise to the same good n-tuple. Clearly, each such equivalence class
contains exactly one n-tuple of positive integers having no common prime divisors. Call such
n-tuple a primitive pretty tuple. Our task is to find infinitely many primitive pretty n-tuples.

For n = 1, there is clearly a single primitive 1-tuple. For n = 2, we have f(a,b) = %,
which can be integral (for coprime a,b € Z-() only if a = b = 1 (see for instance (i) in the first
solution).

Now we construct infinitely many primitive pretty triples for n = 3. Fix b,c, k € Z-q; we
will try to find sufficient conditions for the existence of an a € Qs such that f(a,b,c) = k.
Write 0 = b+ ¢, 7 = be. From f(a,b,c¢) = k, we have that a should satisfy the quadratic
equation

a> ota (0> (k—171)+07=0 (1)

whose discriminant is
A= (0"~ (k—1)7)* 4ot = (k+ 1) — 0%)* — 4k7°.

We need it to be a square of an integer, say, A = M? for some M € Z, i.e., we want

(k+ 17 —0%)%— M* =2k 27"
so that it suffices to set

(k+1)7—0o*=71>+Ek, M =71*—k.
The first relation reads 02 = (7 — 1)(k — 7), so if b and c satisfy
T—1]0° ie. be— 1| (b+c)? (2)

then k£ = T"—jl + 7 will be integral, and we find rational solutions to (1), namely

o b+c 2 —71  be-(be—1)
7T—1 bec—1 o b+c

a =
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We can now find infinitely many pairs (b, ¢) satisfying (2) by Vieta jumping. For example,
if we impose

(b+¢)*=5-(bc—1)

then all pairs (b, c) = (v, v;11) satisfy the above condition, where
V1 = 2, Vg = 3, Vito = 31)2‘4_1 — U; for 7 =0

For (b,¢) = (v;,vi11), one of the solutions to (1) will be a = (b + ¢)/(bc — 1) = 5/(b+ ¢) =
5/(v; + viy1). Then the pretty triple (a, b, ¢) will be equivalent to the integral pretty triple

(5, (Vi 4+ Vit1), Vig1 (Vs + Vig1))

After possibly dividing by 5, we obtain infinitely many primitive pretty triples, as required.

Comment. There are many other infinite series of (b,¢c) = (v;,vi41) with be — 1| (b + ¢)?. Some of
them are:

vy =1, vg = 3, Vip1 = 6v; — v_1, (v + vip1)? = 8 (Vvip1 — 1);
v =1, vg = 2, Vig1 = Tv; — Vi1, (vi +vi41)? = 9 (Vi1 — 1);
vy =1, vy =5, Vig1 = Tv; — Vi1, (vi +vig1)? =9+ (Vvi41 — 1)

(the last two are in fact one sequence prolonged in two possible directions).
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Say that an ordered pair (z,y) of integers is an irreducible lattice point if x and y
are relatively prime. For any finite set S of irreducible lattice points, show that there is a
homogenous polynomial in two variables, f(x,y), with integer coefficients, of degree at least 1,
such that f(z,y) = 1 for each (z,y) in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

f(z,y) = apx™ + alx"_ly + agxn_QyQ 4+ -+ an_lxy"_l + a,y".
(U.S.A.)

Solution 1. First of all, we note that finding a homogenous polynomial f(z,y) such that
f(x,y) = £1 is enough, because we then have f2(x,y) = 1. Label the irreducible lattice points
(x1,y1) through (z,,y,). If any two of these lattice points (z;,y;) and (z;,y;) lie on the same
line through the origin, then (x;,y;) = (—z;, —y;) because both of the points are irreducible.
We then have f(x;,y;) = £f(x;,y;) whenever f is homogenous, so we can assume that no two
of the lattice points are collinear with the origin by ignoring the extra lattice points.

Consider the homogenous polynomials ¢;(z,y) = y;x — z;y and define

gi(z,y) = | [ (=, v).
i
Then /;(z;,y;) = 0 if and only if j = ¢, because there is only one lattice point on each line
through the origin. Thus, g;(z;,y;) = 0 for all j # i. Define a; = g;(z;,y;), and note that
a; # 0.
Note that g;(z,y) is a degree n — 1 polynomial with the following two properties:

L gilaj,y;) = 0if j # 1.

2. gi(zi,ys) = a;.
For any N > n — 1, there also exists a polynomial of degree N with the same two proper-
ties. Specifically, let I;(z,y) be a degree 1 homogenous polynomial such that I;(x;,y;) = 1,
which exists since (x;,y;) is irreducible. Then I;(z,y)N~("Yg;(z,y) satisfies both of the above
properties and has degree V.

We may now reduce the problem to the following claim:

Claim: For each positive integer a, there is a homogenous polynomial f,(x,y), with integer
coefficients, of degree at least 1, such that f,(z,y) =1 (mod a) for all relatively prime (z,vy).

To see that this claim solves the problem, take a to be the least common multiple of the
numbers a; (1 < i < n). Take f, given by the claim, choose some power f,(x,y)* that has
degree at least n — 1, and subtract appropriate multiples of the g; constructed above to obtain
the desired polynomial.

We prove the claim by factoring a. First, if a is a power of a prime (a = p*), then we may
choose either:

o fu(z,y) = (2P~ + yP~ 1)@ if p is odd;

o fulz,y) = (2% +ay+y?)?@ if p=2.

Now suppose a is any positive integer, and let a = ¢1¢2 - - - @&, where the ¢; are prime powers,
pairwise relatively prime. Let f,. be the polynomials just constructed, and let Fj, be powers of
these that all have the same degree. Note that

a a

—F,(z,y) = — (mod a)

d; i
for any relatively prime z,y. By Bézout’s lemma, there is an integer linear combination of
the 2 that equals 1. Thus, there is a linear combination of the [y, such that F,(z,y) =1
(mod a) for any relatively prime (z,y); and this polynomial is homogenous because all the F,
have the same degree.
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Solution 2. Asin the previous solution, label the irreducible lattice points (z1,41), . -, (Zn, Yn)
and assume without loss of generality that no two of the points are collinear with the origin.
We induct on n to construct a homogenous polynomial f(x,y) such that f(x;,y;) = 1 for all
1<i<n

If n = 1: Since x; and y; are relatively prime, there exist some integers c¢,d such that
cx1 +dy; = 1. Then f(z,y) = cx + dy is suitable.

If n = 2: By the induction hypothesis we already have a homogeneous polynomial g(z,y)

with g(21,91) = ... = g(Tpn_1,yn—1) = 1. Let j = degg,
n—1
gnlz,y) = | [z — 2iy),
k=1

and a,, = g,(x,,y,). By assumption, a, # 0. Take some integers ¢, d such that cz, + dy, = 1.
We will construct f(x,y) in the form

f(@,y) =gz, y)* = C- gu(z,y) - (cx + dy)",

where K and L are some positive integers and C'is some integer. We assume that L = Kj—n+1
so that f is homogenous.

Due to g(z1,91) = ... = g(Tp_1,Yn—1) = 1 and g,(z1,11) = ... = gn(Tp_1,Yn—1) = 0, the
property f(x1,1y1) = ... = f(xy_1,yn—1) = 1 is automatically satisfied with any choice of K, L,
and C.

Furthermore,

f(xnvyn) = g(xnvyn)K -C- gn(xna yn) : (an + dyn)L = g(xnvyn)K - Can-

If we have an exponent K such that g(z,,y,)® =1 (mod a,), then we may choose C such that

f(zn,yn) = 1. We now choose such a K.
Consider an arbitrary prime divisor p of a,. By

1

Pl an = gn(Tn,yn) = | | (Urtn — Tryn),
1

3
|

x>
Il

there is some 1 < k < n such that x,y, = z,y; (mod p). We first show that zx, or yiy, is
relatively prime with p. This is trivial in the case xxy, = x,yx # 0 (mod p). In the other case,
we have 2y, = r,yx = 0 (mod p), If, say p | x, then p { y, because (z,yx) is irreducible, so
p | x,; then p 1y, because (xy,yx) is irreducible. In summary, p | zy implies p { yxy,. Similarly,

P | y, implies p { xxz,.
By the homogeneity of g we have the congruences

and
Yl 9(2n, Yn) = 9UETns Yrtn) = 9(T1Yn, Uktn) = Y% - g(zh, yr) = y¢  (mod p). (1.2)

If p t 1,2, then take the (p— 1) power of (1.1); otherwise take the (p —1)** power of (1.2);
by Fermat’s theorem, in both cases we get

9(xn, ya)? "' =1 (mod p).
If p® | m, then we have
g(:pn,yn)pa_l(p_l) =1 (mod p%),

which implies that the exponent K = n - ¢(a,), which is a multiple of all p*~(p — 1), is a
suitable choice. (The factor n is added only so that K > n and so L > 0.)
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Comment. It is possible to show that there is no constant C' for which, given any two irreducible
lattice points, there is some homogenous polynomial f of degree at most C' with integer coefficients
that takes the value 1 on the two points. Indeed, if one of the points is (1,0) and the other is (a,b),
the polynomial f(x,y) = agx™ + a12™ 'y + - -+ + a,y" should satisfy ag = 1, and so a” =1 (mod b).
If a = 3 and b = 2F with k > 3, then n > 2572, If we choose 2¥=2 > (, this gives a contradiction.
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Let p be an odd prime number and Z- be the set of positive integers. Suppose that
a function f: Z-¢ x Z=o — {0, 1} satisfies the following properties:

e f(1,1)=0;
e f(a,b)+ f(b,a) =1 for any pair of relatively prime positive integers (a, b) not both equal
to 1;

e f(a+0b,b) = f(a,b) for any pair of relatively prime positive integers (a, b).

Prove that .
o
D) =/2p—2.
n=1

(Italy)

Solution 1. Denote by A the set of all pairs of coprime positive integers. Notice that for
every (a,b) € A there exists a pair (u,v) € Z? with ua + vb = 1. Moreover, if (ug,vp) is one
such pair, then all such pairs are of the form (u,v) = (ug + kb, vy — ka), where k € Z. So there
exists a unique such pair (u,v) with —b/2 < u < b/2; we denote this pair by (u,v) = g(a,b).
Lemma. Let (a,b) € A and (u,v) = g(a,b). Then f(a,b) =1 < u > 0.
Proof. We induct on a + b. The base case is a + b = 2. In this case, we have that a = b = 1,
g(a,b) = g(1,1) = (0,1) and f(1,1) =0, so the claim holds.

Assume now that a +b > 2, and so a # b, since a and b are coprime. Two cases are possible.

Case 1: a > b.

Notice that g(a — b,b) = (u,v + u), since u(a —b) + (v +u)b =1 and u € (=b/2,b/2]. Thus
f(a,b) =1 < f(a—b,b) =1 <= u > 0 by the induction hypothesis.
Case 2: a <b. (Then, clearly, b = 2.)

Now we estimate v. Since vb = 1 — ua, we have

b b 1
1+a—>vb>1—a—, SO +a
2 2 2

>1+a> -
= - = v =
b 2

Thus 1 +a > 2v > —a, so a = 2v > —a, hence a/2 > v > —a/2, and thus g(b,a) = (v, u).

Observe that f(a,b) =1 <= f(b,a) =0 < f(b—a,a) =0. We know from Case 1
that g(b —a,a) = (v,u+ v). We have f(b—a,a) =0 <= v <0 by the inductive hypothesis.
Then, since b > a > 1 and ua + vb = 1, we have v < 0 <= u > 0, and we are done. O

The Lemma proves that, for all (a,b) € A, f(a,b) = 1 if and only if the inverse of a
modulo b, taken in {1,2,...,b — 1}, is at most b/2. Then, for any odd prime p and integer
n such that n # 0 (mod p), f(n? p) = 1 iff the inverse of n? mod p is less than p/2. Since
{n?modp:1<n<p-1} ={n?modp: 1 <n < p- 1}, including multiplicities (two for
each quadratic residue in each set), we conclude that the desired sum is twice the number of
quadratic residues that are less than p/2, i.e.,

p—1

Zf(nz,p)=2‘{k:1<k<p_

n=1

1
and k? modp<g}'. (1)

Since the number of perfect squares in the interval [1,p/2) is |\/p/2] > +/p/2 — 1, we

conclude that
p—1

Zf("27p)>2(\/§—1) — V22
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Solution 2. We provide a different proof for the Lemma. For this purpose, we use continued
fractions to find g(a,b) = (u,v) explicitly.

The function f is completely determined on A by the following
Claim. Represent a/b as a continued fraction; that is, let ay be an integer and ay,...,a; be
positive integers such that a; > 2 and

a
5 =G0+ i = [ag; a1, ag, - . ., ax].
ay + 1
G2t
... + R
ay
Then f(a,b) =0 < kis even.
Proof. We induct on b. If b = 1, then a/b = [a] and k = 0. Then, for a > 1, an easy induction
shows that f(a,1) = f(1,1) = 0.
Now consider the case b > 1. Perform the Euclidean division a = ¢b + r, with 0 < r < b.
We have r # 0 because ged(a,b) = 1. Hence

a b
fla,b) = f(r,b) =1— f(b,7), 7= [¢;a1,...,ax], and = [ai;as, ..., a].

Then the number of terms in the continued fraction representations of a/b and b/r differ by
one. Since r < b, the inductive hypothesis yields

f(b,r) =0 < k—11is even,

and thus
fla,b) =0 < f(byr) =1 <= k—1isodd < kis even. 0

Now we use the following well-known properties of continued fractions to prove the Lemma:

Let p; and ¢; be coprime positive integers with [ag; a1, as, . . ., a;] = p;/q;, with the notation
borrowed from the Claim. In particular, a/b = [ag; a1, as, . .., ar] = pr/qe. Assume that k> 0
and define ¢_; = 0 if necessary. Then

® ¢ = apQr—1 + Qr—2, and

® agi_1 — bpr_1 = PrGr1 — QGPr—1 = (—1)F 1.

Assume that &£ > 0. Then a; > 2, and

| o

b=aqr=arqr—1 + -2 = QGr—1 = 241 = Q-1 < =,
with strict inequality for £ > 1, and
(=D 'g_1a + (=1)*pp_1b = 1.

Now we finish the proof of the Lemma. It is immediate for k = 0. If k = 1, then (—1)k"1 = 1,
SO
—b/2 <0< (=) g1 <b/2.

If £ > 1, we have g, < b/2, so
—b/2 < (=) gy < b/2.
Thus, for any k > 0, we find that g(a,b) = ((=1)*"1g;_1, (—1)*pr_1), and so

fla,b) =1 <= kisodd — u=(-1)""g_, >0.
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Comment 1. The Lemma can also be established by observing that f is uniquely defined on A,
defining fi(a,b) = 1 if w > 0 in g(a,b) = (u,v) and fi(a,b) = 0 otherwise, and verifying that f;
satisfies all the conditions from the statement.

It seems that the main difficulty of the problem is in conjecturing the Lemma.

Comment 2. The case p = 1 (mod 4) is, in fact, easier than the original problem. We have, in
general, for 1 <a<p-—1,

fla,p) =1—f(p,a) =1-f(p—a,a) = f(a,p—a) = fla+(p—a),p—a) = f(p,p—a) =1 f(p—a,p).

If p=1 (mod 4), then a is a quadratic residue modulo p if and only if p — a is a quadratic residue
modulo p. Therefore, denoting by 74 (with 1 < r;, < p — 1) the remainder of the division of k? by p,

we get
p—1 p—1 p—1

X F02p) = 3, Frnop) = 5 3 (s p) + Fp =) = o

n=1 n=1 n=1

Comment 3. The estimate for the sum Y2 _, f(n?,p) can be improved by refining the final argument
in Solution 1. In fact, one can prove that
p—1
2 p—1
=z —.
>, f(n?p) 16

n=1

By counting the number of perfect squares in the intervals [kp, (k + 1/2)p), we find that

zf(HQ,p)=I§Q <k+%>p‘—[\/k—pJ>- 2)

k=0

Each summand of (2) is non-negative. We now estimate the number of positive summands. Suppose

that a summand is zero, i.e.,
1
{ <k+ 5) p‘ - [«/ka —q

Then both of the numbers kp and kp + p/2 lie within the interval [¢2, (¢ + 1)?). Hence

p
5 <(g+1)*—¢,
which implies
p—1
2 -
1=
Since ¢ < +/kp, if the k*" summand of (2) is zero, then
2 12 _ _
k}q_}(p D) S P 2 = kzp—l.
D 16p 16 16

So at least the first [”1;61] summands (from k& = 0 to k = [%] — 1) are positive, and the result
follows.

Comment 4. The bound can be further improved by using different methods. In fact, we prove that
p—1
p—3
> st = 2
n=1

To that end, we use the Legendre symbol

0 ifp|a
a
(—> =<1 if a is a nonzero quadratic residue mod p
—1 otherwise.

We start with the following Claim, which tells us that there are not too many consecutive quadratic
residues or consecutive quadratic non-residues.
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Claim. Y P_ (%)("pl)
Proof. We have (%)(

3
\+
—

) = (Lﬂ)) For 1 <n < p—1, we get that n(n+1) =n?(1+n"1) (mod p),

P
hence ("("+1 ) = (”Z ) Since {1 +n 'modp: 1 <n<p—1}=1{0,2,3,...,p— 1 mod p}, we find
p—1 - -1 p—1
1 1
G5 -2 (5)-5(6)
n=1 =1 n=1
because >3 _; (%) = 0. O

Observe that (1) becomes

p—1
—1
Zf(nQ,p)=2|S\, SI{Ti1<TSp2 and (%):1}

n=1

We connect S with the sum from the claim by pairing quadratic residues and quadratic non-residues.

To that end, define
, p—1 r
S={r:1<r< and (- ) = —1
2 p

1
T:{T:Iiérépland <z>:1}
2 p
1
T':{r:p—+ <r<p-1and (f) :—1}
2 p

Since there are exactly (p — 1)/2 nonzero quadratic residues modulo p, |S|+ |T| = (p — 1)/2. Also
we obviously have |T'| +|T"| = (p — 1)/2. Then |S| = |T"|.

For the sake of brevity, define ¢t = |S| = |T”|. If (%) (%) = —1, then exactly of one the numbers
(%) and ("Tfl) is equal to 1, so

- 1
{n:1<n<p 3 and <ﬁ)<”+ ):1H<|S|+|51|=2t.
2 P P

On the other hand, if (%) (%) = —1, then exactly one of (%) and ("Tfl) is equal to —1, and

1 1
Hn:%énép—Qand (ﬁ) <"+ ):—1}‘<\T’\+\T’—1|:2t.
p)\ »p

Thus, taking into account that the middle term ((p pl)/ )((erplW) may happen to be —1,

1
{n:1<n<p—2and <ﬁ> ("+ >=—1}‘<4t+1.
p p
This implies that

1
{n:1<n<p2and <@> <”+ ):1}’>(p2)(4t+1)=p4t3,
p p

p—1
1
1= (g) (7” >>p—4t—3—(4t+1)=p—8t—4

n=1 p

and so

which implies 8t > p — 3, and thus
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Comment 5. It is possible to prove that

Z f(n2’p) = p—

n=1 2

The case p = 1 (mod 4) was already mentioned, and it is the equality case. If p = 3 (mod 4),
then, by a theorem of Dirichlet, we have

-1 -1
Hr:lérép and <f>:1}‘>p_,
2 P 4
which implies the result.

See https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas for the full
statement of the theorem. It seems that no elementary proof of it is known; a proof using complex
analysis is available, for instance, in Chapter 7 of the book Quadratic Residues and Non-Residues:
Selected Topics, by Steve Wright, available in https://arxiv.org/abs/1408.0235.



https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas
https://arxiv.org/abs/1408.0235
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