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Problems

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers su
h that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

A2.

Let q be a real number. Gugu has a napkin with ten distin
t real numbers written

on it, and he writes the following three lines of real numbers on the bla
kboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two

(not ne
essarily distin
t) numbers on his napkin.

• In the se
ond line, Gugu writes down every number of the form qab, where a and b are

two (not ne
essarily distin
t) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where

a, b, c, d are four (not ne
essarily distin
t) numbers from the �rst line.

Determine all values of q su
h that, regardless of the numbers on Gugu's napkin, every

number in the se
ond line is also a number in the third line.

(Austria)

A3.

Let S be a �nite set, and let A be the set of all fun
tions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g

for every g in A with g ‰ f . Show that fpT q “ T .

(India)

A4.

A sequen
e of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequen
e is bounded, i.e., there is a 
onstant M su
h that |an| ď M for all

positive integers n.

(Russia)
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A5.

An integer n ě 3 is given. We 
all an n-tuple of real numbers px1, x2, . . . , xnq Shiny

if for ea
h permutation y1, y2, . . . , yn of these numbers we have

n´1ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest 
onstant K “ Kpnq su
h that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

A6.

Find all fun
tions f : R Ñ R su
h that

fpfpxqfpyqq ` fpx ` yq “ fpxyq

for all x, y P R.
(Albania)

A7.

Let a0, a1, a2, . . . be a sequen
e of integers and b0, b1, b2, . . . be a sequen
e of positive

integers su
h that a0 “ 0, a1 “ 1, and

an`1 “
#
anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.

(Australia)

A8.

Assume that a fun
tion f : R Ñ R satis�es the following 
ondition:

For every x, y P R su
h that

`
fpxq `y

˘`
fpyq `x

˘
ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.

(Netherlands)



6 IMO 2017, Rio de Janeiro

Combinatori
s

C1.

A re
tangleR with odd integer side lengths is divided into small re
tangles with integer

side lengths. Prove that there is at least one among the small re
tangles whose distan
es from

the four sides of R are either all odd or all even.

(Singapore)

C2.

Let n be a positive integer. De�ne a 
hameleon to be any sequen
e of 3n letters, with

exa
tly n o

urren
es of ea
h of the letters a, b, and c. De�ne a swap to be the transposition of

two adja
ent letters in a 
hameleon. Prove that for any 
hameleonX , there exists a 
hameleon Y

su
h that X 
annot be 
hanged to Y using fewer than 3n2{2 swaps.

(Australia)

C3.

Sir Alex plays the following game on a row of 9 
ells. Initially, all 
ells are empty. In

ea
h move, Sir Alex is allowed to perform exa
tly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty 
ell.

(2) Choose two (not ne
essarily adja
ent) 
ells with the same number in them; denote that

number by 2j. Repla
e the number in one of the 
ells with 2j`1
and erase the number in

the other 
ell.

At the end of the game, one 
ell 
ontains the number 2n, where n is a given positive integer,

while the other 
ells are empty. Determine the maximum number of moves that Sir Alex 
ould

have made, in terms of n.

(Thailand)

C4.

Let N ě 2 be an integer. NpN ` 1q so

er players, no two of the same height, stand

in a row in some order. Coa
h Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

C5.

A hunter and an invisible rabbit play a game in the Eu
lidean plane. The hunter's

starting point H0 
oin
ides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.

(1) First the invisible rabbit moves se
retly and unobserved from its 
urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.

(2) The hunter has a tra
king devi
e (e.g. dog) that returns an approximate position R1
n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.

Is there a strategy for the hunter that guarantees that after 109 su
h rounds the distan
e

between the hunter and the rabbit is below 100?

(Austria)
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n 
ube is 
omposed of n3
unit 
ubes. Ea
h

unit 
ube is painted with one 
olor. For ea
h n ˆ n ˆ 1 box 
onsisting of n2
unit 
ubes (of any

of the three possible orientations), we 
onsider the set of the 
olors present in that box (ea
h


olor is listed only on
e). This way, we get 3n sets of 
olors, split into three groups a

ording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of 
olors that are

present.

(Russia)

C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . qlooooooooooooooooooomooooooooooooooooooon
A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . qlooooooooooooooooooomooooooooooooooooooon
B appears a times

.

(U.S.A.)

C8.

Let n be a given positive integer. In the Cartesian plane, ea
h latti
e point

with nonnegative 
oordinates initially 
ontains a butter�y, and there are no other butter-

�ies. The neighborhood of a latti
e point c 
onsists of all latti
e points within the axis-aligned

p2n` 1q ˆ p2n` 1q square 
entered at c, apart from c itself. We 
all a butter�y lonely, 
rowded,

or 
omfortable, depending on whether the number of butter�ies in its neighborhood N is re-

spe
tively less than, greater than, or equal to half of the number of latti
e points in N .

Every minute, all lonely butter�ies �y away simultaneously. This pro
ess goes on for as

long as there are any lonely butter�ies. Assuming that the pro
ess eventually stops, determine

the number of 
omfortable butter�ies at the �nal state.

(Bulgaria)
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Geometry

G1.

Let ABCDE be a 
onvex pentagon su
h that AB “ BC “ CD, =EAB “ =BCD,

and =EDC “ =CBA. Prove that the perpendi
ular line from E to BC and the line seg-

ments AC and BD are 
on
urrent.

(Italy)

G2.

Let R and S be distin
t points on 
ir
le Ω, and let t denote the tangent line to Ω

at R. Point R1
is the re�e
tion of R with respe
t to S. A point I is 
hosen on the smaller ar


RS of Ω so that the 
ir
um
ir
le Γ of triangle ISR1
interse
ts t at two di�erent points. Denote

by A the 
ommon point of Γ and t that is 
losest to R. Line AI meets Ω again at J . Show

that JR1
is tangent to Γ.

(Luxembourg)

G3.

Let O be the 
ir
um
enter of an a
ute s
alene triangle ABC. Line OA interse
ts the

altitudes of ABC through B and C at P and Q, respe
tively. The altitudes meet at H . Prove

that the 
ir
um
enter of triangle PQH lies on a median of triangle ABC.

(Ukraine)

G4.

In triangle ABC, let ω be the ex
ir
le opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respe
tively. The 
ir
le AEF interse
ts line BC

at P and Q. Let M be the midpoint of AD. Prove that the 
ir
le MPQ is tangent to ω.

(Denmark)

G5.

Let ABCC1B1A1 be a 
onvex hexagon su
h that AB “ BC, and suppose that the

line segments AA1, BB1, and CC1 have the same perpendi
ular bise
tor. Let the diagonals

AC1 and A1C meet at D, and denote by ω the 
ir
le ABC. Let ω interse
t the 
ir
le A1BC1

again at E ‰ B. Prove that the lines BB1 and DE interse
t on ω.

(Ukraine)

G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verti
es of A that lie inside B or on its boundary are 
onse
utive.

(That is, prove that there exists a line separating those verti
es of A that lie inside B or on

its boundary from the other verti
es of A.)

(Cze
h Republi
)

G7.

A 
onvex quadrilateral ABCD has an ins
ribed 
ir
le with 
enter I. Let Ia, Ib, Ic,

and Id be the in
enters of the triangles DAB, ABC, BCD, and CDA, respe
tively. Suppose

that the 
ommon external tangents of the 
ir
les AIbId and CIbId meet at X , and the 
ommon

external tangents of the 
ir
les BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

G8.

There are 2017 mutually external 
ir
les drawn on a bla
kboard, su
h that no two

are tangent and no three share a 
ommon tangent. A tangent segment is a line segment that

is a 
ommon tangent to two 
ir
les, starting at one tangent point and ending at the other one.

Lu
iano is drawing tangent segments on the bla
kboard, one at a time, so that no tangent

segment interse
ts any other 
ir
les or previously drawn tangent segments. Lu
iano keeps

drawing tangent segments until no more 
an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)
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Number Theory

N1.

The sequen
e a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whi
h there is at least one number a su
h that an “ a for

in�nitely many values of n.

(South Afri
a)

N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in ea
h move, the 
urrent player 
hooses an index i in the set t0, 1, . . . , p´1u
that was not 
hosen before by either of the two players and then 
hooses an element ai of the

set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indi
es

i P t0, 1, . . . , p ´ 1u have been 
hosen. Then the following number is 
omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moro

o)

N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n su
h that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)

(Thailand)

N4.

Call a rational number short if it has �nitely many digits in its de
imal expansion.

For a positive integer m, we say that a positive integer t is m-tasti
 if there exists a number

c P t1, 2, 3, . . . , 2017u su
h that

10t ´ 1

c ¨ m is short, and su
h that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti
 numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

N5.

Find all pairs pp, qq of prime numbers with p ą q for whi
h the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)
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N6.

Find the smallest positive integer n, or show that no su
h n exists, with the following

property: there are in�nitely many distin
t n-tuples of positive rational numbers pa1, a2, . . . , anq
su
h that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

are integers.

(Singapore)

N7.

Say that an ordered pair px, yq of integers is an irredu
ible latti
e point if x and

y are relatively prime. For any �nite set S of irredu
ible latti
e points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer 
oe�
ients, of degree at least 1,

su
h that fpx, yq “ 1 for ea
h px, yq in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a fun
tion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)
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Solutions

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers su
h that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

Solution 1. We �rst prove that, for x ą 0,

aipx ` 1q1{ai ď x ` ai, (1)

with equality if and only if ai “ 1. It is 
lear that equality o

urs if ai “ 1.

If ai ą 1, the AM�GM inequality applied to a single 
opy of x ` 1 and ai ´ 1 
opies of 1

yields

px ` 1q `
ai´1 oneshkkkkkkkikkkkkkkj

1 ` 1 ` ¨ ¨ ¨ ` 1

ai
ě ai

a
px ` 1q ¨ 1ai´1 ùñ aipx ` 1q1{ai ď x ` ai.

Sin
e x ` 1 ą 1, the inequality is stri
t for ai ą 1.

Multiplying the inequalities (1) for i “ 1, 2, . . . , n yields

nź

i“1

aipx ` 1q1{ai ď
nź

i“1

px ` aiq ðñ Mpx ` 1q
řn

i“1
1{ai ´

nź

i“1

px ` aiq ď 0 ðñ P pxq ď 0

with equality i� ai “ 1 for all i P t1, 2, . . . , nu. But this implies M “ 1, whi
h is not possible.

Hen
e P pxq ă 0 for all x P R`
, and P has no positive roots.

Comment 1. Inequality (1) 
an be obtained in several ways. For instan
e, we may also use the

binomial theorem: sin
e ai ě 1,

ˆ
1 ` x

ai

˙ai

“
aiÿ

j“0

ˆ
ai

j

˙ˆ
x

ai

˙j

ě
ˆ
ai

0

˙
`
ˆ
ai

1

˙
¨ x

ai
“ 1 ` x.

Both proofs of (1) mimi
 proofs to Bernoulli's inequality for a positive integer exponent ai; we 
an

use this inequality dire
tly: ˆ
1 ` x

ai

˙ai

ě 1 ` ai ¨ x

ai
“ 1 ` x,

and so

x ` ai “ ai

ˆ
1 ` x

ai

˙
ě aip1 ` xq1{ai ,

or its (reversed) formulation, with exponent 1{ai ď 1:

p1 ` xq1{ai ď 1 ` 1

ai
¨ x “ x ` ai

ai
ùñ aip1 ` xq1{ai ď x ` ai.
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Solution 2. We will prove that, in fa
t, all 
oe�
ients of the polynomial P pxq are non-positive,
and at least one of them is negative, whi
h implies that P pxq ă 0 for x ą 0.

Indeed, sin
e aj ě 1 for all j and aj ą 1 for some j (sin
e a1a2 . . . an “ M ą 1), we have

k “ 1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
ă n, so the 
oe�
ient of xn

in P pxq is ´1 ă 0. Moreover, the 
oe�
ient

of xr
in P pxq is negative for k ă r ď n “ degpP q.

For 0 ď r ď k, the 
oe�
ient of xr
in P pxq is

M ¨
ˆ
k

r

˙
´

ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
“ a1a2 ¨ ¨ ¨ an ¨

ˆ
k

r

˙
´

ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
,

whi
h is non-positive i� ˆ
k

r

˙
ď

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
. (2)

We will prove (2) by indu
tion on r. For r “ 0 it is an equality be
ause the 
onstant term of

P pxq is P p0q “ 0, and if r “ 1, (2) be
omes k “ řn

i“1

1

ai
. For r ą 1, if (2) is true for a given

r ă k, we have

ˆ
k

r ` 1

˙
“ k ´ r

r ` 1
¨
ˆ
k

r

˙
ď k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
,

and it su�
es to prove that

k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
ď

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ ajrajr`1

,

whi
h is equivalent to

ˆ
1

a1
` 1

a2
`¨¨ ¨` 1

an
´r

˙ ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ajr
ďpr`1q

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ajrajr`1

.

Sin
e there are r ` 1 ways to 
hoose a fra
tion

1

aji
from

1

aj1aj2 ¨¨¨ajrajr`1

to fa
tor out, every

term

1

aj1aj2 ¨¨¨ajrajr`1

in the right hand side appears exa
tly r ` 1 times in the produ
t

ˆ
1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙ ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
.

Hen
e all terms in the right hand side 
an
el out.

The remaining terms in the left hand side 
an be grouped in sums of the type

1

a2j1aj2 ¨ ¨ ¨ ajr
` 1

aj1a
2

j2
¨ ¨ ¨ ajr

` ¨ ¨ ¨ ` 1

aj1aj2 ¨ ¨ ¨ a2jr
´ r

aj1aj2 ¨ ¨ ¨ ajr

“ 1

aj1aj2 ¨ ¨ ¨ ajr

ˆ
1

aj1
` 1

aj2
` ¨ ¨ ¨ ` 1

ajr
´ r

˙
,

whi
h are all non-positive be
ause ai ě 1 ùñ 1

ai
ď 1, i “ 1, 2, . . . , n.

Comment 2. The result is valid for any real numbers ai, i “ 1, 2, . . . , n with ai ě 1 and produ
t M

greater than 1. A variation of Solution 1, namely using weighted AM�GM (or the Bernoulli inequality

for real exponents), a
tually proves that P pxq ă 0 for x ą ´1 and x ‰ 0.
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A2.

Let q be a real number. Gugu has a napkin with ten distin
t real numbers written on

it, and he writes the following three lines of real numbers on the bla
kboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two

(not ne
essarily distin
t) numbers on his napkin.

• In the se
ond line, Gugu writes down every number of the form qab, where a and b are

two (not ne
essarily distin
t) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where

a, b, c, d are four (not ne
essarily distin
t) numbers from the �rst line.

Determine all values of q su
h that, regardless of the numbers on Gugu's napkin, every

number in the se
ond line is also a number in the third line.

(Austria)

Answer: ´2, 0, 2.

Solution 1. Call a number q good if every number in the se
ond line appears in the third line

un
onditionally. We �rst show that the numbers 0 and ˘2 are good. The third line ne
essarily


ontains 0, so 0 is good. For any two numbers a, b in the �rst line, write a “ x´y and b “ u´v,

where x, y, u, v are (not ne
essarily distin
t) numbers on the napkin. We may now write

2ab “ 2px ´ yqpu ´ vq “ px ´ vq2 ` py ´ uq2 ´ px ´ uq2 ´ py ´ vq2,

whi
h shows that 2 is good. By negating both sides of the above equation, we also see that ´2

is good.

We now show that ´2, 0, and 2 are the only good numbers. Assume for sake of 
ontradi
tion

that q is a good number, where q R t´2, 0, 2u. We now 
onsider some parti
ular 
hoi
es of

numbers on Gugu's napkin to arrive at a 
ontradi
tion.

Assume that the napkin 
ontains the integers 1, 2, . . . , 10. Then, the �rst line 
ontains

the integers ´9,´8, . . . , 9. The se
ond line then 
ontains q and 81q, so the third line must

also 
ontain both of them. But the third line only 
ontains integers, so q must be an integer.

Furthermore, the third line 
ontains no number greater than 162 “ 92 ` 92 ´ 02 ´ 02 or less

than ´162, so we must have ´162 ď 81q ď 162. This shows that the only possibilities for q

are ˘1.

Now assume that q “ ˘1. Let the napkin 
ontain 0, 1, 4, 8, 12, 16, 20, 24, 28, 32. The �rst

line 
ontains ˘1 and ˘4, so the se
ond line 
ontains ˘4. However, for every number a in the

�rst line, a ı 2 pmod 4q, so we may 
on
lude that a2 ” 0, 1 pmod 8q. Consequently, every

number in the third line must be 
ongruent to ´2,´1, 0, 1, 2 pmod 8q; in parti
ular, ˘4 
annot

be in the third line, whi
h is a 
ontradi
tion.

Solution 2. Let q be a good number, as de�ned in the �rst solution, and de�ne the polynomial

P px1, . . . , x10q as
ź

iăj

pxi ´ xjq
ź

aiPS

`
qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2

˘
,

where S “ tx1, . . . , x10u.
We 
laim that P px1, . . . , x10q “ 0 for every 
hoi
e of real numbers px1, . . . , x10q. If any two

of the xi are equal, then P px1, . . . , x10q “ 0 trivially. If no two are equal, assume that Gugu

has those ten numbers x1, . . . , x10 on his napkin. Then, the number qpx1 ´ x2qpx3 ´ x4q is in

the se
ond line, so we must have some a1, . . . , a8 so that

qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 “ 0,
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and hen
e P px1, . . . , x10q “ 0.

Sin
e every polynomial that evaluates to zero everywhere is the zero polynomial, and the

produ
t of two nonzero polynomials is ne
essarily nonzero, we may de�ne F su
h that

F px1, . . . , x10q ” qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 ” 0 (1)

for some parti
ular 
hoi
e ai P S.

Ea
h of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to at most one of the four

sets tx1, x3u, tx2, x3u, tx1, x4u, and tx2, x4u. Thus, without loss of generality, we may assume

that at most one of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to tx1, x3u. Let

u1, u3, u5, u7 be the indi
ator fun
tions for this equality of sets: that is, ui “ 1 if and only if

tai, ai`1u “ tx1, x3u. By assumption, at least three of the ui are equal to 0.

We now 
ompute the 
oe�
ient of x1x3 in F . It is equal to q ` 2pu1 ` u3 ´ u5 ´ u7q “ 0,

and sin
e at least three of the ui are zero, we must have that q P t´2, 0, 2u, as desired.
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A3.

Let S be a �nite set, and let A be the set of all fun
tions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g

for every g in A with g ‰ f . Show that fpT q “ T .

(India)

Solution. For n ě 1, denote the n-th 
omposition of f with itself by

fn def“ f ˝ f ˝ ¨ ¨ ¨ ˝ flooooooomooooooon
n times

.

By hypothesis, if g P A satis�es f ˝ g ˝ f “ g ˝ f ˝ g, then g “ f . A natural idea is to try to

plug in g “ fn
for some n in the expression f ˝ g ˝ f “ g ˝ f ˝ g in order to get fn “ f , whi
h

solves the problem:

Claim. If there exists n ě 3 su
h that fn`2 “ f 2n`1
, then the restri
tion f : T Ñ T of f to T

is a bije
tion.

Proof. Indeed, by hypothesis, fn`2 “ f 2n`1 ðñ f ˝ fn ˝ f “ fn ˝ f ˝ fn ùñ fn “ f .

Sin
e n ´ 2 ě 1, the image of fn´2
is 
ontained in T “ fpSq, hen
e fn´2

restri
ts to a fun
tion

fn´2 : T Ñ T . This is the inverse of f : T Ñ T . In fa
t, given t P T , say t “ fpsq with s P S,

we have

t “ fpsq “ fnpsq “ fn´2pfptqq “ fpfn´2ptqq, i.e., fn´2 ˝ f “ f ˝ fn´2 “ id on T

(here id stands for the identity fun
tion). Hen
e, the restri
tion f : T Ñ T of f to T is bije
tive

with inverse given by fn´2 : T Ñ T . l

It remains to show that n as in the 
laim exists. For that, de�ne

Sm
def“ fmpSq pSm is image of fmq

Clearly the image of fm`1
is 
ontained in the image of fm

, i.e., there is a des
ending 
hain of

subsets of S

S Ě S1 Ě S2 Ě S3 Ě S4 Ě ¨ ¨ ¨ ,
whi
h must eventually stabilise sin
e S is �nite, i.e., there is a k ě 1 su
h that

Sk “ Sk`1 “ Sk`2 “ Sk`3 “ ¨ ¨ ¨ def“ S8.

Hen
e f restri
ts to a surje
tive fun
tion f : S8 Ñ S8, whi
h is also bije
tive sin
e S8 Ď S is

�nite. To sum up, f : S8 Ñ S8 is a permutation of the elements of the �nite set S8, hen
e

there exists an integer r ě 1 su
h that f r “ id on S8 (for example, we may 
hoose r “ |S8|!).
In other words,

fm`r “ fm
on S for all m ě k. p˚q

Clearly, p˚q also implies that fm`tr “ fm
for all integers t ě 1 and m ě k. So, to �nd n as in

the 
laim and �nish the problem, it is enough to 
hoose m and t in order to ensure that there

exists n ě 3 satisfying

#
2n ` 1 “ m ` tr

n ` 2 “ m
ðñ

#
m “ 3 ` tr

n “ m ´ 2.

This 
an be 
learly done by 
hoosing m large enough with m ” 3 pmod rq. For instan
e, we

may take n “ 2kr ` 1, so that

fn`2 “ f 2kr`3 “ f 4kr`3 “ f 2n`1

where the middle equality follows by p˚q sin
e 2kr ` 3 ě k.
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A4.

A sequen
e of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequen
e is bounded, i.e., there is a 
onstant M su
h that |an| ď M for all

positive integers n.

(Russia)

Solution 1. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequen
es pmnq and pMnq are nonde
reasing. We need to prove that both are

bounded.

Consider an arbitrary n ą D; our �rst aim is to bound an in terms of mn and Mn.

(i) There exist indi
es p and q su
h that an “ ´pap ` aqq and p ` q “ n. Sin
e ap, aq ď Mn, we

have an ě ´2Mn.

(ii) On the other hand, 
hoose an index k ă n su
h that ak “ Mn. Then, we have

an “ ´max
ℓăn

pan´ℓ ` aℓq ď ´pan´k ` akq “ ´an´k ´ Mn ď mn ´ Mn.

Summarizing (i) and (ii), we get

´2Mn ď an ď mn ´ Mn,

when
e

mn ď mn`1 ď maxtmn, 2Mnu and Mn ď Mn`1 ď maxtMn, mn ´ Mnu. (1)

Now, say that an index n ą D is lu
ky if mn ď 2Mn. Two 
ases are possible.

Case 1. Assume that there exists a lu
ky index n. In this 
ase, (1) yields mn`1 ď 2Mn and

Mn ď Mn`1 ď Mn. Therefore, Mn`1 “ Mn and mn`1 ď 2Mn “ 2Mn`1. So, the index n ` 1

is also lu
ky, and Mn`1 “ Mn. Applying the same arguments repeatedly, we obtain that all

indi
es k ą n are lu
ky (i.e., mk ď 2Mk for all these indi
es), and Mk “ Mn for all su
h indi
es.

Thus, all of the mk and Mk are bounded by 2Mn.

Case 2. Assume now that there is no lu
ky index, i.e., 2Mn ă mn for all n ą D. Then (1)

shows that for all n ą D we have mn ď mn`1 ď mn, so mn “ mD`1 for all n ą D. Sin
e

Mn ă mn{2 for all su
h indi
es, all of the mn and Mn are bounded by mD`1.

Thus, in both 
ases the sequen
es pmnq and pMnq are bounded, as desired.

Solution 2. As in the previous solution, let D “ 2017. If the sequen
e is bounded above, say,

by Q, then we have that an ě minta1, . . . , aD,´2Qu for all n, so the sequen
e is bounded. As-

sume for sake of 
ontradi
tion that the sequen
e is not bounded above. Let ℓ “ minta1, . . . , aDu,
and L “ maxta1, . . . , aDu. Call an index n good if the following 
riteria hold:

an ą ai for ea
h i ă n, an ą ´2ℓ, and n ą D (2)

We �rst show that there must be some good index n. By assumption, we may take an

index N su
h that aN ą maxtL,´2ℓu. Choose n minimally su
h that an “ maxta1, a2, . . . , aNu.
Now, the �rst 
ondition in (2) is satis�ed be
ause of the minimality of n, and the se
ond and

third 
onditions are satis�ed be
ause an ě aN ą L,´2ℓ, and L ě ai for every i su
h that

1 ď i ď D.
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Let n be a good index. We derive a 
ontradi
tion. We have that

an ` au ` av ď 0, (3)

whenever u ` v “ n.

We de�ne the index u to maximize au over 1 ď u ď n´ 1, and let v “ n´u. Then, we note

that au ě av by the maximality of au.

Assume �rst that v ď D. Then, we have that

aN ` 2ℓ ď 0,

be
ause au ě av ě ℓ. But this 
ontradi
ts our assumption that an ą ´2ℓ in the se
ond 
riteria

of (2).

Now assume that v ą D. Then, there exist some indi
es w1, w2 summing up to v su
h that

av ` aw1
` aw2

“ 0.

But 
ombining this with (3), we have

an ` au ď aw1
` aw2

.

Be
ause an ą au, we have that maxtaw1
, aw2

u ą au. But sin
e ea
h of the wi is less than v, this


ontradi
ts the maximality of au.

Comment 1. We present two harder versions of this problem below.

Version 1. Let a1, a2, . . . be a sequen
e of numbers that satis�es the relation

an “ ´ max
i`j`k“n

pai ` aj ` akq for all n ą 2017.

Then, this sequen
e is bounded.

Proof. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequen
es pmnq and pMnq are nonde
reasing. We need to prove that both are bounded.

Consider an arbitrary n ą 2D; our �rst aim is to bound an in terms of mi and Mi. Set k “ tn{2u.

(i) Choose indi
es p, q, and r su
h that an “ ´pap ` aq ` arq and p ` q ` r “ n. Without loss of

generality, p ě q ě r.

Assume that p ě k ` 1pą Dq; then p ą q ` r. Hen
e

´ap “ max
i1`i2`i3“p

pai1 ` ai2 ` ai3q ě aq ` ar ` ap´q´r,

and therefore an “ ´pap ` aq ` arq ě paq ` ar ` ap´q´rq ´ aq ´ ar “ ap´q´r ě ´mn.

Otherwise, we have k ě p ě q ě r. Sin
e n ă 3k, we have r ă k. Then ap, aq ď Mk`1 and

ar ď Mk, when
e an ě ´2Mk`1 ´ Mk.

Thus, in any 
ase an ě ´maxtmn, 2Mk`1 ` Mku.
(ii) On the other hand, 
hoose p ď k and q ď k´1 su
h that ap “ Mk`1 and aq “ Mk. Then p`q ă n,

so an ď ´pap ` aq ` an´p´qq “ ´an´p´q ´ Mk`1 ´ Mk ď mn ´ Mk`1 ´ Mk.

To summarize,

´maxtmn, 2Mk`1 ` Mku ď an ď mn ´ Mk`1 ´ Mk,

when
e

mn ď mn`1 ď maxtmn, 2Mk`1 ` Mku and Mn ď Mn`1 ď maxtMn,mn ´ Mk`1 ´ Mku. (4)
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Now, say that an index n ą 2D is lu
ky if mn ď 2Mtn{2u`1 ` Mtn{2u. Two 
ases are possible.

Case 1. Assume that there exists a lu
ky index n; set k “ tn{2u. In this 
ase, (4) yields mn`1 ď
2Mk`1 ` Mk and Mn ď Mn`1 ď Mn (the last relation holds, sin
e mn ´ Mk`1 ´ Mk ď p2Mk`1 `
Mkq ´Mk`1 ´Mk “ Mk`1 ď Mn). Therefore, Mn`1 “ Mn and mn`1 ď 2Mk`1 `Mk; the last relation

shows that the index n ` 1 is also lu
ky.

Thus, all indi
es N ą n are lu
ky, and MN “ Mn ě mN{3, when
e all the mN and MN are

bounded by 3Mn.

Case 2. Conversely, assume that there is no lu
ky index, i.e., 2Mtn{2u`1 `Mtn{2u ă mn for all n ą 2D.

Then (4) shows that for all n ą 2D we have mn ď mn`1 ď mn, i.e., mN “ m2D`1 for all N ą 2D.

Sin
e MN ă m2N`1{3 for all su
h indi
es, all the mN and MN are bounded by m2D`1.

Thus, in both 
ases the sequen
es pmnq and pMnq are bounded, as desired. l

Version 2. Let a1, a2, . . . be a sequen
e of numbers that satis�es the relation

an “ ´ max
i1`¨¨¨`ik“n

pai1 ` ¨ ¨ ¨ ` aikq for all n ą 2017.

Then, this sequen
e is bounded.

Proof. As in the solutions above, let D “ 2017. If the sequen
e is bounded above, say, by Q, then we

have that an ě minta1, . . . , aD,´kQu for all n, so the sequen
e is bounded. Assume for sake of 
ontra-

di
tion that the sequen
e is not bounded above. Let ℓ “ minta1, . . . , aDu, and L “ maxta1, . . . , aDu.
Call an index n good if the following 
riteria hold:

an ą ai for ea
h i ă n, an ą ´kℓ, and n ą D (5)

We �rst show that there must be some good index n. By assumption, we may take an index N

su
h that aN ą maxtL,´kℓu. Choose n minimally su
h that an “ maxta1, a2, . . . , aNu. Now, the �rst

ondition is satis�ed be
ause of the minimality of n, and the se
ond and third 
onditions are satis�ed

be
ause an ě aN ą L,´kℓ, and L ě ai for every i su
h that 1 ď i ď D.

Let n be a good index. We derive a 
ontradi
tion. We have that

an ` av1 ` ¨ ¨ ¨ ` avk ď 0, (6)

whenever v1 ` ¨ ¨ ¨ ` vk “ n.

We de�ne the sequen
e of indi
es v1, . . . , vk´1 to greedily maximize av1 , then av2 , and so forth,

sele
ting only from indi
es su
h that the equation v1 ` ¨ ¨ ¨ `vk “ n 
an be satis�ed by positive integers

v1, . . . , vk. More formally, we de�ne them indu
tively so that the following 
riteria are satis�ed by

the vi:

1. 1 ď vi ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
2. avi is maximal among all 
hoi
es of vi from the �rst 
riteria.

First of all, we note that for ea
h i, the �rst 
riteria is always satis�able by some vi, be
ause we

are guaranteed that

vi´1 ď n ´ pk ´ pi ´ 1qq ´ pv1 ` ¨ ¨ ¨ ` vi´2q,
whi
h implies

1 ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
Se
ondly, the sum v1 ` ¨ ¨ ¨ ` vk´1 is at most n ´ 1. De�ne vk “ n ´ pv1 ` ¨ ¨ ¨ ` vk´1q. Then, (6)

is satis�ed by the vi. We also note that avi ě avj for all i ă j; otherwise, in the de�nition of vi, we


ould have sele
ted vj instead.

Assume �rst that vk ď D. Then, from (6), we have that

an ` kℓ ď 0,

by using that av1 ě ¨ ¨ ¨ ě avk ě ℓ. But this 
ontradi
ts our assumption that an ą ´kℓ in the se
ond


riteria of (5).
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Now assume that vk ą D, and then we must have some indi
es w1, . . . , wk summing up to vk su
h

that

avk ` aw1
` ¨ ¨ ¨ ` awk

“ 0.

But 
ombining this with (6), we have

an ` av1 ` ¨ ¨ ¨ ` avk´1
ď aw1

` ¨ ¨ ¨ ` awk
.

Be
ause an ą av1 ě ¨ ¨ ¨ ě avk´1
, we have that maxtaw1

, . . . , awk
u ą avk´1

. But sin
e ea
h of the wi

is less than vk, in the de�nition of the vk´1 we 
ould have 
hosen one of the wi instead, whi
h is a


ontradi
tion. l

Comment 2. It seems that ea
h sequen
e satisfying the 
ondition in Version 2 is eventually periodi
,

at least when its terms are integers.

However, up to this moment, the Problem Sele
tion Committee is not aware of a proof for this fa
t

(even in the 
ase k “ 2).
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A5.

An integer n ě 3 is given. We 
all an n-tuple of real numbers px1, x2, . . . , xnq Shiny if

for ea
h permutation y1, y2, . . . , yn of these numbers we have

n´1ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest 
onstant K “ Kpnq su
h that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

Answer: K “ ´pn ´ 1q{2.
Solution 1. First of all, we show that we may not take a larger 
onstant K. Let t be a positive

number, and take x2 “ x3 “ ¨ ¨ ¨ “ t and x1 “ ´1{p2tq. Then, every produ
t xixj (i ‰ j) is

equal to either t2 or ´1{2. Hen
e, for every permutation yi of the xi, we have

y1y2 ` ¨ ¨ ¨ ` yn´1yn ě pn ´ 3qt2 ´ 1 ě ´1.

This justi�es that the n-tuple px1, . . . , xnq is Shiny. Now, we have
ÿ

iăj

xixj “ ´n ´ 1

2
` pn ´ 1qpn ´ 2q

2
t2.

Thus, as t approa
hes 0 from above,

ř
iăj xixj gets arbitrarily 
lose to ´pn ´ 1q{2. This shows

that we may not take K any larger than ´pn ´ 1q{2. It remains to show that

ř
iăj xixj ě

´pn ´ 1q{2 for any Shiny 
hoi
e of the xi.

From now onward, assume that px1, . . . , xnq is a Shiny n-tuple. Let the zi (1 ď i ď n) be

some permutation of the xi to be 
hosen later. The indi
es for zi will always be taken modulo n.

We will �rst split up the sum

ř
iăj xixj “ ř

iăj zizj into tpn ´ 1q{2u expressions, ea
h of the

form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi, and some leftover terms. More

spe
i�
ally, write

ÿ

iăj

zizj “
n´1ÿ

q“0

ÿ

i`j”q pmod nq
iıj pmod nq

zizj “
tn´1

2
uÿ

p“1

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj ` L, (1)

where L “ z1z´1 ` z2z´2 ` ¨ ¨ ¨ ` zpn´1q{2z´pn´1q{2 if n is odd, and L “ z1z´1 ` z1z´2 ` z2z´2 `
¨ ¨ ¨ ` zpn´2q{2z´n{2 if n is even. We note that for ea
h p “ 1, 2, . . . , tpn ´ 1q{2u, there is some

permutation yi of the zi su
h that

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj “
n´1ÿ

k“1

ykyk`1,

be
ause we may 
hoose y2i´1 “ zi`p´1 for 1 ď i ď pn ` 1q{2 and y2i “ zp´i for 1 ď i ď n{2.
We show (1) graphi
ally for n “ 6, 7 in the diagrams below. The edges of the graphs ea
h

represent a produ
t zizj, and the dashed and dotted series of lines represents the sum of the

edges, whi
h is of the form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi pre
isely when

the series of lines is a Hamiltonian path. The �lled edges represent the summands of L.
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Now, be
ause the zi are Shiny, we have that (1) yields the following bound:

ÿ

iăj

zizj ě ´
Z
n ´ 1

2

^
` L.

It remains to show that, for ea
h n, there exists some permutation zi of the xi su
h that L ě 0

when n is odd, and L ě ´1{2 when n is even. We now split into 
ases based on the parity of n

and provide 
onstru
tions of the permutations zi.

Sin
e we have not made any assumptions yet about the xi, we may now assume without

loss of generality that

x1 ď x2 ď ¨ ¨ ¨ ď xk ď 0 ď xk`1 ď ¨ ¨ ¨ ď xn. (2)

Case 1: n is odd.

Without loss of generality, assume that k (from (2)) is even, be
ause we may negate all

the xi if k is odd. We then have x1x2, x3x4, . . . , xn´2xn´1 ě 0 be
ause the fa
tors are of the

same sign. Let L “ x1x2 ` x3x4 ` ¨ ¨ ¨ ` xn´2xn´1 ě 0. We 
hoose our zi so that this de�nition

of L agrees with the sum of the leftover terms in (1). Relabel the xi as zi su
h that

tz1, zn´1u, tz2, zn´2u, . . . , tzpn´1q{2, zpn`1q{2u

are some permutation of

tx1, x2u, tx3, x4u, . . . , txn´2, xn´1u,
and zn “ xn. Then, we have L “ z1zn´1 ` ¨ ¨ ¨ ` zpn´1q{2zpn`1q{2, as desired.

Case 2: n is even.

Let L “ x1x2 `x2x3 ` ¨ ¨ ¨ `xn´1xn. Assume without loss of generality k ‰ 1. Now, we have

2L “ px1x2 ` ¨ ¨ ¨ ` xn´1xnq ` px1x2 ` ¨ ¨ ¨ ` xn´1xnq ě px2x3 ` ¨ ¨ ¨ ` xn´1xnq ` xkxk`1

ě x2x3 ` ¨ ¨ ¨ ` xn´1xn ` xnx1 ě ´1,

where the �rst inequality holds be
ause the only negative term in L is xkxk`1, the se
ond

inequality holds be
ause x1 ď xk ď 0 ď xk`1 ď xn, and the third inequality holds be
ause

the xi are assumed to be Shiny. We thus have that L ě ´1{2. We now 
hoose a suitable zi
su
h that the de�nition of L mat
hes the leftover terms in (1).



Shortlisted problems � solutions 23

Relabel the xi with zi in the following manner: x2i´1 “ z´i, x2i “ zi (again taking indi
es

modulo n). We have that

L “
ÿ

i`j”0,´1 pmod nq
iıj pmod nq

zizj ,

as desired.

Solution 2. We present another proof that

ř
iăj xixj ě ´pn ´ 1q{2 for any Shiny n-tuple

px1, . . . , xnq. Assume an ordering of the xi as in (2), and let ℓ “ n ´ k. Assume without loss

of generality that k ě ℓ. Also assume k ‰ n, (as otherwise, all of the xi are nonpositive, and

so the inequality is trivial). De�ne the sets of indi
es S “ t1, 2, . . . , ku and T “ tk ` 1, . . . , nu.
De�ne the following sums:

K “
ÿ

iăj
i,jPS

xixj , M “
ÿ

iPS
jPT

xixj , and L “
ÿ

iăj
i,jPT

xixj

By de�nition, K,L ě 0 and M ď 0. We aim to show that K ` L ` M ě ´pn ´ 1q{2.
We split into 
ases based on whether k “ ℓ or k ą ℓ.

Case 1: k ą ℓ.

Consider all permutations φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu su
h that φ´1pT q “ t2, 4, . . . , 2ℓu.
Note that there are k!ℓ! su
h permutations φ. De�ne

fpφq “
n´1ÿ

i“1

xφpiqxφpi`1q.

We know that fpφq ě ´1 for every permutation φ with the above property. Averaging fpφq
over all φ gives

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ

kℓ
M ` 2pk ´ ℓ ´ 1q

kpk ´ 1q K,

where the equality holds be
ause there are kℓ produ
ts inM , of whi
h 2ℓ are sele
ted for ea
h φ,

and there are kpk ´ 1q{2 produ
ts in K, of whi
h k ´ ℓ ´ 1 are sele
ted for ea
h φ. We now

have

K ` L ` M ě K ` L `
ˆ

´k

2
´ k ´ ℓ ´ 1

k ´ 1
K

˙
“ ´k

2
` ℓ

k ´ 1
K ` L.

Sin
e k ď n ´ 1 and K,L ě 0, we get the desired inequality.

Case 2: k “ ℓ “ n{2.
We do a similar approa
h, 
onsidering all φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu su
h that φ´1pT q “

t2, 4, . . . , 2ℓu, and de�ning f the same way. Analogously to Case 1, we have

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ ´ 1

kℓ
M,

be
ause there are kℓ produ
ts in M , of whi
h 2ℓ´ 1 are sele
ted for ea
h φ. Now, we have that

K ` L ` M ě M ě ´ n2

4pn ´ 1q ě ´n ´ 1

2
,

where the last inequality holds be
ause n ě 4.
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A6.

Find all fun
tions f : R Ñ R su
h that

fpfpxqfpyqq ` fpx ` yq “ fpxyq p˚q

for all x, y P R.
(Albania)

Answer: There are 3 solutions:

x ÞÑ 0 or x ÞÑ x ´ 1 or x ÞÑ 1 ´ x px P Rq.

Solution. An easy 
he
k shows that all the 3 above mentioned fun
tions indeed satisfy the

original equation p˚q.
In order to show that these are the only solutions, �rst observe that if fpxq is a solution

then ´fpxq is also a solution. Hen
e, without loss of generality we may (and will) assume that

fp0q ď 0 from now on. We have to show that either f is identi
ally zero or fpxq “ x ´ 1

(@x P R).

Observe that, for a �xed x ‰ 1, we may 
hoose y P R so that x ` y “ xy ðñ y “ x
x´1

,

and therefore from the original equation p˚q we have

f
´
fpxq ¨ f

´ x

x ´ 1

¯¯
“ 0 px ‰ 1q. (1)

In parti
ular, plugging in x “ 0 in (1), we 
on
lude that f has at least one zero, namely pfp0qq2:

f
`
pfp0qq2

˘
“ 0. (2)

We analyze two 
ases (re
all that fp0q ď 0):

Case 1: fp0q “ 0.

Setting y “ 0 in the original equation we get the identi
ally zero solution:

fpfpxqfp0qq ` fpxq “ fp0q ùñ fpxq “ 0 for all x P R.

From now on, we work on the main

Case 2: fp0q ă 0.

We begin with the following

Claim 1.

fp1q “ 0, fpaq “ 0 ùñ a “ 1, and fp0q “ ´1. (3)

Proof. We need to show that 1 is the unique zero of f . First, observe that f has at least one

zero a by (2); if a ‰ 1 then setting x “ a in (1) we get fp0q “ 0, a 
ontradi
tion. Hen
e

from (2) we get pfp0qq2 “ 1. Sin
e we are assuming fp0q ă 0, we 
on
lude that fp0q “ ´1. l

Setting y “ 1 in the original equation p˚q we get

fpfpxqfp1qq`fpx`1q “ fpxq ðñ fp0q`fpx`1q “ fpxq ðñ fpx`1q “ fpxq`1 px P Rq.

An easy indu
tion shows that

fpx ` nq “ fpxq ` n px P R, n P Zq. (4)
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Now we make the following

Claim 2. f is inje
tive.

Proof. Suppose that fpaq “ fpbq with a ‰ b. Then by (4), for all N P Z,

fpa ` N ` 1q “ fpb ` Nq ` 1.

Choose any integer N ă ´b; then there exist x0, y0 P R with x0 `y0 “ a`N `1, x0y0 “ b`N .

Sin
e a ‰ b, we have x0 ‰ 1 and y0 ‰ 1. Plugging in x0 and y0 in the original equation p˚q we
get

fpfpx0qfpy0qq ` fpa ` N ` 1q “ fpb ` Nq ðñ fpfpx0qfpy0qq ` 1 “ 0

ðñ fpfpx0qfpy0q ` 1q “ 0 by (4)

ðñ fpx0qfpy0q “ 0 by (3).

However, by Claim 1 we have fpx0q ‰ 0 and fpy0q ‰ 0 sin
e x0 ‰ 1 and y0 ‰ 1, a 
ontradi
tion.

l

Now the end is near. For any t P R, plug in px, yq “ pt,´tq in the original equation p˚q to
get

fpfptqfp´tqq ` fp0q “ fp´t2q ðñ fpfptqfp´tqq “ fp´t2q ` 1 by (3)

ðñ fpfptqfp´tqq “ fp´t2 ` 1q by (4)

ðñ fptqfp´tq “ ´t2 ` 1 by inje
tivity of f.

Similarly, plugging in px, yq “ pt, 1 ´ tq in p˚q we get

fpfptqfp1 ´ tqq ` fp1q “ fptp1 ´ tqq ðñ fpfptqfp1 ´ tqq “ fptp1 ´ tqq by (3)

ðñ fptqfp1 ´ tq “ tp1 ´ tq by inje
tivity of f.

But sin
e fp1 ´ tq “ 1 ` fp´tq by (4), we get

fptqfp1 ´ tq “ tp1 ´ tq ðñ fptqp1 ` fp´tqq “ tp1 ´ tq ðñ fptq ` p´t2 ` 1q “ tp1 ´ tq
ðñ fptq “ t ´ 1,

as desired.

Comment. Other approa
hes are possible. For instan
e, after Claim 1, we may de�ne

gpxq def“ fpxq ` 1.

Repla
ing x ` 1 and y ` 1 in pla
e of x and y in the original equation p˚q, we get

fpfpx ` 1qfpy ` 1qq ` fpx ` y ` 2q “ fpxy ` x ` y ` 1q px, y P Rq,

and therefore, using (4) (so that in parti
ular gpxq “ fpx ` 1q), we may rewrite p˚q as

gpgpxqgpyqq ` gpx ` yq “ gpxy ` x ` yq px, y P Rq. p˚˚q

We are now to show that gpxq “ x for all x P R under the assumption (Claim 1) that 0 is the unique

zero of g.

Claim 3. Let n P Z and x P R. Then

(a) gpx ` nq “ x ` n, and the 
onditions gpxq “ n and x “ n are equivalent.

(b) gpnxq “ ngpxq.
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Proof. For part (a), just note that gpx`nq “ x`n is just a reformulation of (4). Then gpxq “ n ðñ
gpx ´ nq “ 0 ðñ x ´ n “ 0 sin
e 0 is the unique zero of g. For part (b), we may assume that x ‰ 0
sin
e the result is obvious when x “ 0. Plug in y “ n{x in p˚˚q and use part (a) to get

g
´
gpxqg

´n
x

¯¯
` g

´
x ` n

x

¯
“ g

´
n ` x ` n

x

¯
ðñ g

´
gpxqg

´n
x

¯¯
“ n ðñ gpxqg

´n
x

¯
“ n.

In other words, for x ‰ 0 we have

gpxq “ n

g
`
n{x

˘ .

In parti
ular, for n “ 1, we get gp1{xq “ 1{gpxq, and therefore repla
ing x Ð nx in the last equation

we �nally get

gpnxq “ n

g
`
1{x

˘ “ ngpxq,

as required.

Claim 4. The fun
tion g is additive, i.e., gpa ` bq “ gpaq ` gpbq for all a, b P R.

Proof. Set x Ð ´x and y Ð ´y in p˚˚q; sin
e g is an odd fun
tion (by Claim 3(b) with n “ ´1), we
get

gpgpxqgpyqq ´ gpx ` yq “ ´gp´xy ` x ` yq.
Subtra
ting the last relation from p˚˚q we have

2gpx ` yq “ gpxy ` x ` yq ` gp´xy ` x ` yq

and sin
e by Claim 3(b) we have 2gpx ` yq “ gp2px ` yqq, we may rewrite the last equation as

gpα ` βq “ gpαq ` gpβq where

#
α “ xy ` x ` y

β “ ´xy ` x ` y.

In other words, we have additivity for all α, β P R for whi
h there are real numbers x and y satisfying

x ` y “ α ` β

2
and xy “ α ´ β

2
,

i.e., for all α, β P R su
h that pα`β
2

q2 ´4 ¨ α´β
2

ě 0. Therefore, given any a, b P R, we may 
hoose n P Z
large enough so that we have additivity for α “ na and β “ nb, i.e.,

gpnaq ` gpnbq “ gpna ` nbq ðñ ngpaq ` ngpbq “ ngpa ` bq

by Claim 3(b). Can
elling n, we get the desired result. (Alternatively, setting either pα, βq “ pa, bq or
pα, βq “ p´a,´bq will ensure that pα`β

2
q2 ´ 4 ¨ α´β

2
ě 0). l

Now we may �nish the solution. Set y “ 1 in p˚˚q, and use Claim 3 to get

gpgpxqgp1qq ` gpx ` 1q “ gp2x ` 1q ðñ gpgpxqq ` gpxq ` 1 “ 2gpxq ` 1 ðñ gpgpxqq “ gpxq.

By additivity, this is equivalent to gpgpxq ´ xq “ 0. Sin
e 0 is the unique zero of g by assumption, we

�nally get gpxq ´ x “ 0 ðñ gpxq “ x for all x P R.
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A7.

Let a0, a1, a2, . . . be a sequen
e of integers and b0, b1, b2, . . . be a sequen
e of positive

integers su
h that a0 “ 0, a1 “ 1, and

an`1 “
#
anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.

(Australia)

Solution 1. The value of b0 is irrelevant sin
e a0 “ 0, so we may assume that b0 “ 1.

Lemma. We have an ě 1 for all n ě 1.

Proof. Let us suppose otherwise in order to obtain a 
ontradi
tion. Let

n ě 1 be the smallest integer with an ď 0. (1)

Note that n ě 2. It follows that an´1 ě 1 and an´2 ě 0. Thus we 
annot have an “
an´1bn´1 ` an´2, so we must have an “ an´1bn´1 ´ an´2. Sin
e an ď 0, we have an´1 ď an´2.

Thus we have an´2 ě an´1 ě an.

Let

r be the smallest index with ar ě ar`1 ě ar`2. (2)

Then r ď n´2 by the above, but also r ě 2: if b1 “ 1, then a2 “ a1 “ 1 and a3 “ a2b2`a1 ą a2;

if b1 ą 1, then a2 “ b1 ą 1 “ a1.

By the minimal 
hoi
e (2) of r, it follows that ar´1 ă ar. And sin
e 2 ď r ď n ´ 2, by the

minimal 
hoi
e (1) of n we have ar´1, ar, ar`1 ą 0. In order to have ar`1 ě ar`2, we must have

ar`2 “ ar`1br`1 ´ ar so that br ě 2. Putting everything together, we 
on
lude that

ar`1 “ arbr ˘ ar´1 ě 2ar ´ ar´1 “ ar ` par ´ ar´1q ą ar,

whi
h 
ontradi
ts (2). l

To 
omplete the problem, we prove that maxtan, an`1u ě n by indu
tion. The 
ases n “ 0, 1

are given. Assume it is true for all non-negative integers stri
tly less than n, where n ě 2. There

are two 
ases:

Case 1: bn´1 “ 1.

Then an`1 “ anbn ` an´1. By the indu
tive assumption one of an´1, an is at least n´ 1 and

the other, by the lemma, is at least 1. Hen
e

an`1 “ anbn ` an´1 ě an ` an´1 ě pn ´ 1q ` 1 “ n.

Thus maxtan, an`1u ě n, as desired.

Case 2: bn´1 ą 1.

Sin
e we de�ned b0 “ 1 there is an index r with 1 ď r ď n ´ 1 su
h that

bn´1, bn´2, . . . , br ě 2 and br´1 “ 1.

We have ar`1 “ arbr ` ar´1 ě 2ar ` ar´1. Thus ar`1 ´ ar ě ar ` ar´1.

Now we 
laim that ar ` ar´1 ě r. Indeed, this holds by inspe
tion for r “ 1; for r ě 2, one

of ar, ar´1 is at least r ´ 1 by the indu
tive assumption, while the other, by the lemma, is at

least 1. Hen
e ar ` ar´1 ě r, as 
laimed, and therefore ar`1 ´ ar ě r by the last inequality in

the previous paragraph.

Sin
e r ě 1 and, by the lemma, ar ě 1, from ar`1 ´ ar ě r we get the following two

inequalities:

ar`1 ě r ` 1 and ar`1 ą ar.
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Now observe that

am ą am´1 ùñ am`1 ą am for m “ r ` 1, r ` 2, . . . , n ´ 1,

sin
e am`1 “ ambm ´ am´1 ě 2am ´ am´1 “ am ` pam ´ am´1q ą am. Thus

an ą an´1 ą ¨ ¨ ¨ ą ar`1 ě r ` 1 ùñ an ě n.

So maxtan, an`1u ě n, as desired.

Solution 2. We say that an index n ą 1 is bad if bn´1 “ 1 and bn´2 ą 1; otherwise n is good.

The value of b0 is irrelevant to the de�nition of panq sin
e a0 “ 0; so we assume that b0 ą 1.

Lemma 1. (a) an ě 1 for all n ą 0.

(b) If n ą 1 is good, then an ą an´1.

Proof. Indu
tion on n. In the base 
ases n “ 1, 2 we have a1 “ 1 ě 1, a2 “ b1a1 ě 1, and �nally

a2 ą a1 if 2 is good, sin
e in this 
ase b1 ą 1.

Now we assume that the lemma statement is proved for n “ 1, 2, . . . , k with k ě 2, and

prove it for n “ k ` 1. Re
all that ak and ak´1 are positive by the indu
tion hypothesis.

Case 1: k is bad.

We have bk´1 “ 1, so ak`1 “ bkak ` ak´1 ě ak ` ak´1 ą ak ě 1, as required.

Case 2: k is good.

We already have ak ą ak´1 ě 1 by the indu
tion hypothesis. We 
onsider three easy

sub
ases.

Sub
ase 2.1: bk ą 1.

Then ak`1 ě bkak ´ ak´1 ě ak ` pak ´ ak´1q ą ak ě 1.

Sub
ase 2.2: bk “ bk´1 “ 1.

Then ak`1 “ ak ` ak´1 ą ak ě 1.

Sub
ase 2.3: bk “ 1 but bk´1 ą 1.

Then k ` 1 is bad, and we need to prove only (a), whi
h is trivial: ak`1 “ ak ´ ak´1 ě 1.

So, in all three sub
ases we have veri�ed the required relations. l

Lemma 2. Assume that n ą 1 is bad. Then there exists a j P t1, 2, 3u su
h that an`j ě
an´1 ` j ` 1, and an`i ě an´1 ` i for all 1 ď i ă j.

Proof. Re
all that bn´1 “ 1. Set

m “ infti ą 0: bn`i´1 ą 1u

(possibly m “ `8). We 
laim that j “ mintm, 3u works. Again, we distinguish several 
ases,

a

ording to the value of m; in ea
h of them we use Lemma 1 without referen
e.

Case 1: m “ 1, so bn ą 1.

Then an`1 ě 2an ` an´1 ě an´1 ` 2, as required.

Case 2: m “ 2, so bn “ 1 and bn`1 ą 1.

Then we su

essively get

an`1 “ an ` an´1 ě an´1 ` 1,

an`2 ě 2an`1 ` an ě 2pan´1 ` 1q ` an “ an´1 ` pan´1 ` an ` 2q ě an´1 ` 4,

whi
h is even better than we need.
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Case 3: m ą 2, so bn “ bn`1 “ 1.

Then we su

essively get

an`1 “ an ` an´1 ě an´1 ` 1, an`2 “ an`1 ` an ě an´1 ` 1 ` an ě an´1 ` 2,

an`3 ě an`2 ` an`1 ě pan´1 ` 1q ` pan´1 ` 2q ě an´1 ` 4,

as required. l

Lemmas 1(b) and 2 provide enough information to prove that maxtan, an`1u ě n for all n

and, moreover, that an ě n often enough. Indeed, assume that we have found some n with

an´1 ě n´1. If n is good, then by Lemma 1(b) we have an ě n as well. If n is bad, then Lemma 2

yields maxtan`i, an`i`1u ě an´1 ` i`1 ě n` i for all 0 ď i ă j and an`j ě an´1 ` j`1 ě n` j;

so n ` j is the next index to start with.
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A8.

Assume that a fun
tion f : R Ñ R satis�es the following 
ondition:

For every x, y P R su
h that

`
fpxq `y

˘`
fpyq `x

˘
ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.

(Netherlands)

Solution 1. De�ne gpxq “ x ´ fpxq. The 
ondition on f then rewrites as follows:

For every x, y P R su
h that

`
px ` yq ´ gpxq

˘`
px ` yq ´ gpyq

˘
ą 0, we have gpxq “ gpyq.

This 
ondition may in turn be rewritten in the following form:

If gpxq ‰ gpyq, then the number x ` y lies (non-stri
tly) between gpxq and gpyq. p˚q
Noti
e here that the fun
tion g1pxq “ ´gp´xq also satis�es p˚q, sin
e

g1pxq ‰ g1pyq ùñ gp´xq ‰ gp´yq ùñ ´px ` yq lies between gp´xq and gp´yq
ùñ x ` y lies between g1pxq and g1pyq.

On the other hand, the relation we need to prove reads now as

gpxq ď gpyq whenever x ă y. (1)

Again, this 
ondition is equivalent to the same one with g repla
ed by g1.

If gpxq “ 2x for all x P R, then p˚q is obvious; so in what follows we 
onsider the other


ase. We split the solution into a sequen
e of lemmas, strengthening one another. We always


onsider some value of x with gpxq ‰ 2x and denote X “ gpxq.
Lemma 1. Assume that X ă 2x. Then on the interval pX ´ x; xs the fun
tion g attains at

most two values � namely, X and, possibly, some Y ą X . Similarly, if X ą 2x, then g attains

at most two values on rx;X ´ xq � namely, X and, possibly, some Y ă X .

Proof. We start with the �rst 
laim of the lemma. Noti
e that X ´ x ă x, so the 
onsidered

interval is nonempty.

Take any a P pX ´ x; xq with gpaq ‰ X (if it exists). If gpaq ă X , then p˚q yields gpaq ď
a ` x ď gpxq “ X , so a ď X ´ x whi
h is impossible. Thus, gpaq ą X and hen
e by p˚q we get
X ď a ` x ď gpaq.

Now, for any b P pX ´ x; xq with gpbq ‰ X we similarly get b ` x ď gpbq. Therefore, the

number a` b (whi
h is smaller than ea
h of a ` x and b` x) 
annot lie between gpaq and gpbq,
whi
h by p˚q implies that gpaq “ gpbq. Hen
e g may attain only two values on pX ´ x; xs,
namely X and gpaq ą X .

To prove the se
ond 
laim, noti
e that g1p´xq “ ´X ă 2 ¨ p´xq, so g1 attains at most two

values on p´X ` x,´xs, i.e., ´X and, possibly, some ´Y ą ´X. Passing ba
k to g, we get

what we need. l

Lemma 2. If X ă 2x, then g is 
onstant on pX ´x; xq. Similarly, if X ą 2x, then g is 
onstant

on px;X ´ xq.
Proof. Again, it su�
es to prove the �rst 
laim only. Assume, for the sake of 
ontradi
tion,

that there exist a, b P pX ´ x; xq with gpaq ‰ gpbq; by Lemma 1, we may assume that gpaq “ X

and Y “ gpbq ą X .

Noti
e that mintX ´ a,X ´ bu ą X ´ x, so there exists a u P pX ´ x; xq su
h that

u ă mintX ´ a,X ´ bu. By Lemma 1, we have either gpuq “ X or gpuq “ Y . In the former


ase, by p˚q we have X ď u ` b ď Y whi
h 
ontradi
ts u ă X ´ b. In the se
ond 
ase, by p˚q
we have X ď u ` a ď Y whi
h 
ontradi
ts u ă X ´ a. Thus the lemma is proved. l
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Lemma 3. If X ă 2x, then gpaq “ X for all a P pX´x; xq. Similarly, if X ą 2x, then gpaq “ X

for all a P px;X ´ xq.
Proof. Again, we only prove the �rst 
laim.

By Lemmas 1 and 2, this 
laim may be violated only if g takes on a 
onstant value Y ą X

on pX ´ x, xq. Choose any a, b P pX ´ x; xq with a ă b. By p˚q, we have

Y ě b ` x ě X. (2)

In parti
ular, we have Y ě b` x ą 2a. Applying Lemma 2 to a in pla
e of x, we obtain that g

is 
onstant on pa, Y ´ aq. By (2) again, we have x ď Y ´ b ă Y ´ a; so x, b P pa; Y ´ aq. But
X “ gpxq ‰ gpbq “ Y , whi
h is a 
ontradi
tion. l

Now we are able to �nish the solution. Assume that gpxq ą gpyq for some x ă y. Denote

X “ gpxq and Y “ gpyq; by p˚q, we have X ě x ` y ě Y , so Y ´ y ď x ă y ď X ´ x,

and hen
e pY ´ y; yq X px;X ´ xq “ px, yq ‰ ∅. On the other hand, sin
e Y ´ y ă y and

x ă X´x, Lemma 3 shows that g should attain a 
onstant value X on px;X´xq and a 
onstant
value Y ‰ X on pY ´ y; yq. Sin
e these intervals overlap, we get the �nal 
ontradi
tion.

Solution 2. As in the previous solution, we pass to the fun
tion g satisfying p˚q and noti
e

that we need to prove the 
ondition (1). We will also make use of the fun
tion g1.

If g is 
onstant, then (1) is 
learly satis�ed. So, in the sequel we assume that g takes on at

least two di�erent values. Now we 
olle
t some information about the fun
tion g.

Claim 1. For any c P R, all the solutions of gpxq “ c are bounded.

Proof. Fix any y P R with gpyq ‰ c. Assume �rst that gpyq ą c. Now, for any x with gpxq “ c,

by p˚q we have c ď x ` y ď gpyq, or c ´ y ď x ď gpyq ´ y. Sin
e c and y are 
onstant, we get

what we need.

If gpyq ă c, we may swit
h to the fun
tion g1 for whi
h we have g1p´yq ą ´c. By the above

arguments, we obtain that all the solutions of g1p´xq “ ´c are bounded, whi
h is equivalent

to what we need. l

As an immediate 
onsequen
e, the fun
tion g takes on in�nitely many values, whi
h shows

that the next 
laim is indeed widely appli
able.

Claim 2. If gpxq ă gpyq ă gpzq, then x ă z.

Proof. By p˚q, we have gpxq ď x ` y ď gpyq ď z ` y ď gpzq, so x ` y ď z ` y, as required. l

Claim 3. Assume that gpxq ą gpyq for some x ă y. Then gpaq P tgpxq, gpyqu for all a P rx; ys.
Proof. If gpyq ă gpaq ă gpxq, then the triple py, a, xq violates Claim 2. If gpaq ă gpyq ă gpxq,
then the triple pa, y, xq violates Claim 2. If gpyq ă gpxq ă gpaq, then the triple py, x, aq violates
Claim 2. The only possible 
ases left are gpaq P tgpxq, gpyqu. l

In view of Claim 3, we say that an interval I (whi
h may be open, 
losed, or semi-open) is

a Diri
hlet interval

∗
if the fun
tion g takes on just two values on I.

Assume now, for the sake of 
ontradi
tion, that (1) is violated by some x ă y. By Claim 3,

rx; ys is a Diri
hlet interval. Set

r “ infta : pa; ys is a Diri
hlet intervalu and s “ suptb : rx; bq is a Diri
hlet intervalu.

Clearly, r ď x ă y ď s. By Claim 1, r and s are �nite. Denote X “ gpxq, Y “ gpyq, and
∆ “ py ´ xq{2.

Suppose �rst that there exists a t P pr; r ` ∆q with fptq “ Y . By the de�nition of r, the

interval pr ´ ∆; ys is not Diri
hlet, so there exists an r1 P pr ´ ∆; rs su
h that gpr1q R tX, Y u.
∗
The name Diri
hlet interval is 
hosen for the reason that g theoreti
ally might a
t similarly to the Diri
hlet

fun
tion on this interval.
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The fun
tion g attains at least three distin
t values on rr1; ys, namely gpr1q, gpxq, and gpyq.
Claim 3 now yields gpr1q ď gpyq; the equality is impossible by the 
hoi
e of r1

, so in fa
t

gpr1q ă Y . Applying p˚q to the pairs pr1, yq and pt, xq we obtain r1 ` y ď Y ď t ` x, when
e

r ´ ∆ ` y ă r1 ` y ď t ` x ă r ` ∆ ` x, or y ´ x ă 2∆. This is a 
ontradi
tion.

Thus, gptq “ X for all t P pr; r ` ∆q. Applying the same argument to g1, we get gptq “ Y

for all t P ps ´ ∆; sq.
Finally, 
hoose some s1, s2 P ps ´ ∆; sq with s1 ă s2 and denote δ “ ps2 ´ s1q{2. As before,

we 
hoose r1 P pr ´ δ; rq with gpr1q R tX, Y u and obtain gpr1q ă Y . Choose any t P pr; r` δq; by
the above arguments, we have gptq “ X and gps1q “ gps2q “ Y . As before, we apply p˚q to the

pairs pr1, s2q and pt, s1q obtaining r ´ δ ` s2 ă r1 ` s2 ď Y ď t` s1 ă r ` δ ` s1, or s2 ´ s1 ă 2δ.

This is a �nal 
ontradi
tion.

Comment 1. The original submission dis
ussed the same fun
tions f , but the question was di�er-

ent � namely, the following one:

Prove that the equation fpxq “ 2017x has at most one solution, and the equation fpxq “ ´2017x
has at least one solution.

The Problem Sele
tion Committee de
ided that the question we are proposing is more natural,

sin
e it provides more natural information about the fun
tion g (whi
h is indeed the main 
hara
ter

in this story). On the other hand, the new problem statement is strong enough in order to imply the

original one easily.

Namely, we will dedu
e from the new problem statement (along with the fa
ts used in the solutions)

that piq for every N ą 0 the equation gpxq “ ´Nx has at most one solution, and piiq for every N ą 1
the equation gpxq “ Nx has at least one solution.

Claim piq is now trivial. Indeed, g is proven to be non-de
reasing, so gpxq`Nx is stri
tly in
reasing

and thus has at most one zero.

We pro
eed on 
laim piiq. If gp0q “ 0, then the required root has been already found. Otherwise,

we may assume that gp0q ą 0 and denote c “ gp0q. We intend to prove that x “ c{N is the required

root. Indeed, by monotoni
ity we have gpc{Nq ě gp0q “ c; if we had gpc{Nq ą c, then p˚q would yield

c ď 0 ` c{N ď gpc{Nq whi
h is false. Thus, gpxq “ c “ Nx.

Comment 2. There are plenty of fun
tions g satisfying p˚q (and hen
e of fun
tions f satisfying

the problem 
onditions). One simple example is g0pxq “ 2x. Next, for any in
reasing sequen
e

A “ p. . . , a´1, a0, a1, . . . q whi
h is unbounded in both dire
tions (i.e., for every N this sequen
e 
ontains

terms greater than N , as well as terms smaller than ´N), the fun
tion gA de�ned by

gApxq “ ai ` ai`1 whenever x P rai; ai`1q

satis�es p˚q. Indeed, pi
k any x ă y with gpxq ‰ gpyq; this means that x P rai; ai`1q and y P raj ; aj`1q
for some i ă j. Then we have gpxq “ ai ` ai`1 ď x ` y ă aj ` aj`1 “ gpyq, as required.

There also exist examples of the mixed behavior; e.g., for an arbitrary sequen
e A as above and an

arbitrary subset I Ď Z the fun
tion

gA,Ipxq “
#
g0pxq, x P rai; ai`1q with i P I;

gApxq, x P rai; ai`1q with i R I

also satis�es p˚q.
Finally, it is even possible to provide a 
omplete des
ription of all fun
tions g satisfying p˚q (and

hen
e of all fun
tions f satisfying the problem 
onditions); however, it seems to be far out of s
ope for

the IMO. This des
ription looks as follows.

Let A be any 
losed subset of R whi
h is unbounded in both dire
tions. De�ne the fun
tions iA,

sA, and gA as follows:

iApxq “ infta P A : a ě xu, sApxq “ supta P A : a ď xu, gApxq “ iApxq ` sApxq.
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It is easy to see that for di�erent sets A and B the fun
tions gA and gB are also di�erent (sin
e, e.g.,

for any a P A zB the fun
tion gB is 
onstant in a small neighborhood of a, but the fun
tion gA is not).

One may 
he
k, similarly to the arguments above, that ea
h su
h fun
tion satis�es p˚q.
Finally, one more modi�
ation is possible. Namely, for any x P A one may rede�ne gApxq (whi
h

is 2x) to be any of the numbers

gA`pxq “ iA`pxq ` x or gA´pxq “ x ` sA´pxq,
where iA`pxq “ infta P A : a ą xu and sA´pxq “ supta P A : a ă xu.

This really 
hanges the value if x has some right (respe
tively, left) semi-neighborhood disjoint from A,

so there are at most 
ountably many possible 
hanges; all of them 
an be performed independently.

With some e�ort, one may show that the 
onstru
tion above provides all fun
tions g satisfying p˚q.
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Combinatori
s

C1.

A re
tangleR with odd integer side lengths is divided into small re
tangles with integer

side lengths. Prove that there is at least one among the small re
tangles whose distan
es from

the four sides of R are either all odd or all even.

(Singapore)

Solution. Let the width and height of R be odd numbers a and b. Divide R into ab unit

squares and 
olor them green and yellow in a 
he
kered pattern. Sin
e the side lengths of a

and b are odd, the 
orner squares of R will all have the same 
olor, say green.

Call a re
tangle (either R or a small re
tangle) green if its 
orners are all green; 
all it

yellow if the 
orners are all yellow, and 
all it mixed if it has both green and yellow 
orners. In

parti
ular, R is a green re
tangle.

We will use the following trivial observations.

‚ Every mixed re
tangle 
ontains the same number of green and yellow squares;

‚ Every green re
tangle 
ontains one more green square than yellow square;

‚ Every yellow re
tangle 
ontains one more yellow square than green square.

The re
tangle R is green, so it 
ontains more green unit squares than yellow unit squares.

Therefore, among the small re
tangles, at least one is green. Let S be su
h a small green

re
tangle, and let its distan
es from the sides of R be x, y, u and v, as shown in the pi
ture.

The top-left 
orner of R and the top-left 
orner of S have the same 
olor, whi
h happen if and

only if x and u have the same parity. Similarly, the other three green 
orners of S indi
ate that

x and v have the same parity, y and u have the same parity, i.e. x, y, u and v are all odd or all

even.

u v

R

S

y

x
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C2.

Let n be a positive integer. De�ne a 
hameleon to be any sequen
e of 3n letters, with

exa
tly n o

urren
es of ea
h of the letters a, b, and c. De�ne a swap to be the transposition of

two adja
ent letters in a 
hameleon. Prove that for any 
hameleonX , there exists a 
hameleon Y

su
h that X 
annot be 
hanged to Y using fewer than 3n2{2 swaps.

(Australia)

Solution 1. To start, noti
e that the swap of two identi
al letters does not 
hange a 
hameleon,

so we may assume there are no su
h swaps.

For any two 
hameleons X and Y , de�ne their distan
e dpX, Y q to be the minimal number

of swaps needed to transform X into Y (or vi
e versa). Clearly, dpX, Y q ` dpY, Zq ě dpX,Zq
for any three 
hameleons X , Y , and Z.

Lemma. Consider two 
hameleons

P “ aa . . . aloomoon
n

bb . . . bloomoon
n

cc . . . cloomoon
n

and Q “ cc . . . cloomoon
n

bb . . . bloomoon
n

aa . . . aloomoon
n

.

Then dpP,Qq ě 3n2
.

Proof. For any 
hameleon X and any pair of distin
t letters u, v P ta, b, cu, we de�ne fu,vpXq
to be the number of pairs of positions in X su
h that the left one is o

upied by u, and

the right one is o

upied by v. De�ne fpXq “ fa,bpXq ` fa,cpXq ` fb,cpXq. Noti
e that

fa,bpP q “ fa,cpP q “ fb,cpP q “ n2
and fa,bpQq “ fa,cpQq “ fb,cpQq “ 0, so fpP q “ 3n2

and

fpQq “ 0.

Now 
onsider some swap 
hanging a 
hameleonX toX 1
; say, the letters a and b are swapped.

Then fa,bpXq and fa,bpX 1q di�er by exa
tly 1, while fa,cpXq “ fa,cpX 1q and fb,cpXq “ fb,cpX 1q.
This yields |fpXq ´fpX 1q| “ 1, i.e., on any swap the value of f 
hanges by 1. Hen
e dpX, Y q ě
|fpXq ´ fpY q| for any two 
hameleons X and Y . In parti
ular, dpP,Qq ě |fpP q ´ fpQq| “ 3n2

,

as desired. l

Ba
k to the problem, take any 
hameleon X and noti
e that dpX,P q`dpX,Qq ě dpP,Qq ě
3n2

by the lemma. Consequently, maxtdpX,P q, dpX,Qqu ě 3n2

2
, whi
h establishes the problem

statement.

Comment 1. The problem may be reformulated in a graph language. Constru
t a graph G with the


hameleons as verti
es, two verti
es being 
onne
ted with an edge if and only if these 
hameleons di�er

by a single swap. Then dpX,Y q is the usual distan
e between the verti
es X and Y in this graph.

Re
all that the radius of a 
onne
ted graph G is de�ned as

rpGq “ min
vPV

max
uPV

dpu, vq.

So we need to prove that the radius of the 
onstru
ted graph is at least 3n2{2.
It is well-known that the radius of any 
onne
ted graph is at least the half of its diameter (whi
h

is simply maxu,vPV dpu, vq). Exa
tly this fa
t has been used above in order to �nish the solution.

Solution 2. We use the notion of distan
e from Solution 1, but provide a di�erent lower

bound for it.

In any 
hameleon X , we enumerate the positions in it from left to right by 1, 2, . . . , 3n.

De�ne scpXq as the sum of positions o

upied by c. The value of sc 
hanges by at most 1 on

ea
h swap, but this fa
t alone does not su�
e to solve the problem; so we need an improvement.

For every 
hameleon X , denote by Xc the sequen
e obtained from X by removing all n

letters c. Enumerate the positions in Xc from left to right by 1, 2, . . . , 2n, and de�ne sc,bpXq
as the sum of positions in Xc o

upied by b. (In other words, here we 
onsider the positions of

the b's relatively to the a's only.) Finally, denote

d1pX, Y q :“ |scpXq ´ scpY q| ` |sc,bpXq ´ sc,bpY q|.
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Now 
onsider any swap 
hanging a 
hameleon X to X 1
. If no letter c is involved into this

swap, then scpXq “ scpX 1q; on the other hand, exa
tly one letter b 
hanges its position in Xc, so

|sc,bpXq ´sc,bpX 1q| “ 1. If a letter c is involved into a swap, then Xc “ X 1
c, so sc,bpXq “ sc,bpX 1q

and |scpXq ´ scpX 1q| “ 1. Thus, in all 
ases we have d1pX,X 1q “ 1.

As in the previous solution, this means that dpX, Y q ě d1pX, Y q for any two 
hameleons X

and Y . Now, for any 
hameleon X we will indi
ate a 
hameleon Y with d1pX, Y q ě 3n2{2, thus
�nishing the solution.

The fun
tion sc attains all integer values from 1 ` ¨ ¨ ¨ ` n “ npn`1q
2

to p2n ` 1q ` ¨ ¨ ¨ ` 3n “
2n2 ` npn`1q

2
. If scpXq ď n2 ` npn`1q

2
, then we put the letter c into the last n positions in Y ;

otherwise we put the letter c into the �rst n positions in Y . In either 
ase we already have

|scpXq ´ scpY q| ě n2
.

Similarly, sc,b ranges from
npn`1q

2
to n2 ` npn`1q

2
. So, if sc,bpXq ď n2

2
` npn`1q

2
, then we put

the letter b into the last n positions in Y whi
h are still free; otherwise, we put the letter b into

the �rst n su
h positions. The remaining positions are o

upied by a. In any 
ase, we have

|sc,bpXq ´ sc,bpY q| ě n2

2
, thus d1pX, Y q ě n2 ` n2

2
“ 3n2

2
, as desired.

Comment 2. The two solutions above used two lower bounds |fpXq ´ fpY q| and d1pX,Y q for the

number dpX,Y q. One may see that these bounds are 
losely related to ea
h other, as

fa,cpXq ` fb,cpXq “ scpXq ´ npn ` 1q
2

and fa,bpXq “ sc,bpXq ´ npn ` 1q
2

.

One 
an see that, e.g., the bound d1pX,Y q 
ould as well be used in the proof of the lemma in Solution 1.

Let us des
ribe here an even sharper bound whi
h also 
an be used in di�erent versions of the

solutions above.

In ea
h 
hameleon X, enumerate the o

urren
es of a from the left to the right as a1, a2, . . . , an.

Sin
e we got rid of swaps of identi
al letters, the relative order of these letters remains the same during

the swaps. Perform the same operation with the other letters, obtaining new letters b1, . . . , bn and

c1, . . . , cn. Denote by A the set of the 3n obtained letters.

Sin
e all 3n letters be
ame di�erent, for any 
hameleon X and any s P A we may de�ne the

position NspXq of s in X (thus 1 ď NspXq ď 3n). Now, for any two 
hameleons X and Y we say that

a pair of letters ps, tq P AˆA is an pX,Y q-inversion if NspXq ă NtpXq but NspY q ą NtpY q, and de�ne

d˚pX,Y q to be the number of pX,Y q-inversions. Then for any two 
hameleons Y and Y 1
di�ering by a

single swap, we have |d˚pX,Y q ´ d˚pX,Y 1q| “ 1. Sin
e d˚pX,Xq “ 0, this yields dpX,Y q ě d˚pX,Y q
for any pair of 
hameleons X and Y . The bound d˚

may also be used in both Solution 1 and Solution 2.

Comment 3. In fa
t, one may prove that the distan
e d˚
de�ned in the previous 
omment 
oin
ides

with d. Indeed, if X ‰ Y , then there exist an pX,Y q-inversion ps, tq. One 
an show that su
h s and t

may be 
hosen to o

upy 
onse
utive positions in Y . Clearly, s and t 
orrespond to di�erent letters

among ta, b, cu. So, swapping them in Y we get another 
hameleon Y 1
with d˚pX,Y 1q “ d˚pX,Y q ´ 1.

Pro
eeding in this manner, we may 
hange Y to X in d˚pX,Y q steps.
Using this fa
t, one 
an show that the estimate in the problem statement is sharp for all n ě 2.

(For n “ 1 it is not sharp, sin
e any permutation of three letters 
an be 
hanged to an opposite one in

no less than three swaps.) We outline the proof below.

For any k ě 0, de�ne

X2k “ abc abc . . . abclooooooomooooooon
3k letters

cba cba . . . cbalooooooomooooooon
3k letters

and X2k`3 “ abc abc . . . abclooooooomooooooon
3k letters

abc bca cab cba cba . . . cbalooooooomooooooon
3k letters

.

We 
laim that for every n ě 2 and every 
hameleon Y , we have d˚pXn, Y q ď
P
3n2{2

T
. This will mean

that for every n ě 2 the number 3n2{2 in the problem statement 
annot be 
hanged by any number

larger than

P
3n2{2

T
.

For any distin
t letters u, v P ta, b, cu and any two 
hameleons X and Y , we de�ne d˚
u,vpX,Y q as

the number of pX,Y q-inversions ps, tq su
h that s and t are instan
es of u and v (in any of the two

possible orders). Then d˚pX,Y q “ d˚
a,bpX,Y q ` d˚

b,cpX,Y q ` d˚
c,apX,Y q.
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We start with the 
ase when n “ 2k is even; denote X “ X2k. We show that d˚
a,bpX,Y q ď 2k2

for any 
hameleon Y ; this yields the required estimate. Pro
eed by the indu
tion on k with the trivial

base 
ase k “ 0. To perform the indu
tion step, noti
e that d˚
a,bpX,Y q is indeed the minimal number of

swaps needed to 
hange Yc into Xc. One may show that moving a1 and a2k in Y onto the �rst and the

last positions in Y , respe
tively, takes at most 2k swaps, and that subsequent moving b1 and b2k onto

the se
ond and the se
ond last positions takes at most 2k ´ 2 swaps. After performing that, one may

delete these letters from both Xc and Yc and apply the indu
tion hypothesis; so Xc 
an be obtained

from Yc using at most 2pk ´ 1q2 ` 2k ` p2k ´ 2q “ 2k2 swaps, as required.

If n “ 2k ` 3 is odd, the proof is similar but more te
hni
ally involved. Namely, we 
laim that

d˚
a,bpX2k`3, Y q ď 2k2 ` 6k ` 5 for any 
hameleon Y , and that the equality is a
hieved only if Yc “

bb . . . b aa . . . a. The proof pro
eeds by a similar indu
tion, with some 
are taken of the base 
ase, as

well as of extra
ting the equality 
ase. Similar estimates hold for d˚
b,c and d˚

c,a. Summing three su
h

estimates, we obtain

d˚pX2k`3, Y q ď 3p2k2 ` 6k ` 5q “
R
3n2

2

V
` 1,

whi
h is by 1 more than we need. But the equality 
ould be a
hieved only if Yc “ bb . . . b aa . . . a

and, similarly, Yb “ aa . . . a cc . . . c and Ya “ cc . . . c bb . . . b. Sin
e these three equalities 
annot hold

simultaneously, the proof is �nished.
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C3.

Sir Alex plays the following game on a row of 9 
ells. Initially, all 
ells are empty. In

ea
h move, Sir Alex is allowed to perform exa
tly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty 
ell.

(2) Choose two (not ne
essarily adja
ent) 
ells with the same number in them; denote that

number by 2j. Repla
e the number in one of the 
ells with 2j`1
and erase the number in

the other 
ell.

At the end of the game, one 
ell 
ontains the number 2n, where n is a given positive integer,

while the other 
ells are empty. Determine the maximum number of moves that Sir Alex 
ould

have made, in terms of n.

(Thailand)

Answer: 2
ř

8

j“0

`
n

j

˘
´ 1.

Solution 1. We will solve a more general problem, repla
ing the row of 9 
ells with a row of k


ells, where k is a positive integer. Denote by mpn, kq the maximum possible number of moves

Sir Alex 
an make starting with a row of k empty 
ells, and ending with one 
ell 
ontaining

the number 2n and all the other k ´ 1 
ells empty. Call an operation of type (1) an insertion,

and an operation of type (2) a merge.

Only one move is possible when k “ 1, so we have mpn, 1q “ 1. From now on we 
onsider

k ě 2, and we may assume Sir Alex's last move was a merge. Then, just before the last move,

there were exa
tly two 
ells with the number 2n´1
, and the other k ´ 2 
ells were empty.

Paint one of those numbers 2n´1
blue, and the other one red. Now tra
e ba
k Sir Alex's

moves, always painting the numbers blue or red following this rule: if a and b merge into c,

paint a and b with the same 
olor as c. Noti
e that in this ba
kward pro
ess new numbers are

produ
ed only by reversing merges, sin
e reversing an insertion simply means deleting one of

the numbers. Therefore, all numbers appearing in the whole pro
ess will re
eive one of the two


olors.

Sir Alex's �rst move is an insertion. Without loss of generality, assume this �rst number

inserted is blue. Then, from this point on, until the last move, there is always at least one 
ell

with a blue number.

Besides the last move, there is no move involving a blue and a red number, sin
e all merges

involves numbers with the same 
olor, and insertions involve only one number. Call an insertion

of a blue number or merge of two blue numbers a blue move, and de�ne a red move analogously.

The whole sequen
e of blue moves 
ould be repeated on another row of k 
ells to produ
e

one 
ell with the number 2n´1
and all the others empty, so there are at most mpn ´ 1, kq blue

moves.

Now we look at the red moves. Sin
e every time we perform a red move there is at least

one 
ell o

upied with a blue number, the whole sequen
e of red moves 
ould be repeated on a

row of k ´ 1 
ells to produ
e one 
ell with the number 2n´1
and all the others empty, so there

are at most mpn ´ 1, k ´ 1q red moves. This proves that

mpn, kq ď mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.

On the other hand, we 
an start with an empty row of k 
ells and perform mpn ´ 1, kq
moves to produ
e one 
ell with the number 2n´1

and all the others empty, and after that

perform mpn ´ 1, k ´ 1q moves on those k ´ 1 empty 
ells to produ
e the number 2n´1
in one

of them, leaving k ´ 2 empty. With one more merge we get one 
ell with 2n and the others

empty, proving that

mpn, kq ě mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.
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It follows that

mpn, kq “ mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1, (1)

for n ě 1 and k ě 2.

If k “ 1 or n “ 0, we must insert 2n on our �rst move and immediately get the �nal


on�guration, so mp0, kq “ 1 and mpn, 1q “ 1, for n ě 0 and k ě 1. These initial values,

together with the re
urren
e relation (1), determine mpn, kq uniquely.
Finally, we show that

mpn, kq “ 2

k´1ÿ

j“0

ˆ
n

j

˙
´ 1, (2)

for all integers n ě 0 and k ě 1.

We use indu
tion on n. Sin
e mp0, kq “ 1 for k ě 1, (2) is true for the base 
ase. We make

the indu
tion hypothesis that (2) is true for some �xed positive integer n and all k ě 1. We

have mpn ` 1, 1q “ 1 “ 2
`
n`1

0

˘
´ 1, and for k ě 2 the re
urren
e relation (1) and the indu
tion

hypothesis give us

mpn ` 1, kq “ mpn, kq ` mpn, k ´ 1q ` 1 “ 2

k´1ÿ

j“0

ˆ
n

j

˙
´ 1 ` 2

k´2ÿ

j“0

ˆ
n

j

˙
´ 1 ` 1

“ 2

k´1ÿ

j“0

ˆ
n

j

˙
` 2

k´1ÿ

j“0

ˆ
n

j ´ 1

˙
´ 1 “ 2

k´1ÿ

j“0

ˆˆ
n

j

˙
`
ˆ

n

j ´ 1

˙˙
´ 1 “ 2

k´1ÿ

j“0

ˆ
n ` 1

j

˙
´ 1,

whi
h 
ompletes the proof.

Comment 1. After dedu
ing the re
urren
e relation (1), it may be 
onvenient to homogenize the

re
urren
e relation by de�ning hpn, kq “ mpn, kq ` 1. We get the new relation

hpn, kq “ hpn ´ 1, kq ` hpn ´ 1, kq, (3)

for n ě 1 and k ě 2, with initial values hp0, kq “ hpn, 1q “ 2, for n ě 0 and k ě 1.
This may help one to guess the answer, and also with other approa
hes like the one we develop

next.

Comment 2. We 
an use a generating fun
tion to �nd the answer without guessing. We work with

the homogenized re
urren
e relation (3). De�ne hpn, 0q “ 0 so that (3) is valid for k “ 1 as well. Now

we set up the generating fun
tion fpx, yq “
ř

n,kě0
hpn, kqxnyk. Multiplying the re
urren
e relation (3)

by xnyk and summing over n, k ě 1, we get

ÿ

n,kě1

hpn, kqxnyk “ x
ÿ

n,kě1

hpn ´ 1, kqxn´1yk ` xy
ÿ

n,kě1

hpn ´ 1, k ´ 1qxn´1yk´1.

Completing the missing terms leads to the following equation on fpx, yq:

fpx, yq ´
ÿ

ně0

hpn, 0qxn ´
ÿ

kě1

hp0, kqyk “ xfpx, yq ´ x
ÿ

ně0

hpn, 0qxn ` xyfpx, yq.

Substituting the initial values, we obtain

fpx, yq “ 2y

1 ´ y
¨ 1

1 ´ xp1 ` yq .

Developing as a power series, we get

fpx, yq “ 2
ÿ

jě1

yj ¨
ÿ

ně0

p1 ` yqnxn.
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The 
oe�
ient of xn in this power series is

2
ÿ

jě1

yj ¨ p1 ` yqn “ 2
ÿ

jě1

yj ¨
ÿ

iě0

ˆ
n

i

˙
yi,

and extra
ting the 
oe�
ient of yk in this last expression we �nally obtain the value for hpn, kq,

hpn, kq “ 2
k´1ÿ

j“0

ˆ
n

j

˙
.

This proves that

mpn, kq “ 2
k´1ÿ

j“0

ˆ
n

j

˙
´ 1.

The generating fun
tion approa
h also works if applied to the non-homogeneous re
urren
e rela-

tion (1), but the 
omputations are less straightforward.

Solution 2. De�ne merges and insertions as in Solution 1. After ea
h move made by Sir Alex

we 
ompute the number N of empty 
ells, and the sum S of all the numbers written in the


ells. Insertions always in
rease S by some power of 2, and in
rease N exa
tly by 1. Merges do

not 
hange S and de
rease N exa
tly by 1. Sin
e the initial value of N is 0 and its �nal value

is 1, the total number of insertions ex
eeds that of merges by exa
tly one. So, to maximize the

number of moves, we need to maximize the number of insertions.

We will need the following lemma.

Lemma. If the binary representation of a positive integer A has d nonzero digits, then A 
annot

be represented as a sum of fewer than d powers of 2. Moreover, any representation of A as a

sum of d powers of 2 must 
oin
ide with its binary representation.

Proof. Let s be the minimum number of summands in all possible representations of A as sum

of powers of 2. Suppose there is su
h a representation with s summands, where two of the

summands are equal to ea
h other. Then, repla
ing those two summands with the result of

their sum, we obtain a representation with fewer than s summands, whi
h is a 
ontradi
tion.

We dedu
e that in any representation with s summands, the summands are all distin
t, so any

su
h representation must 
oin
ide with the unique binary representation of A, and s “ d. l

Now we split the solution into a sequen
e of 
laims.

Claim 1. After every move, the number S is the sum of at most k ´ 1 distin
t powers of 2.

Proof. If S is the sum of k (or more) distin
t powers of 2, the Lemma implies that the k 
ells

are �lled with these numbers. This is a 
ontradi
tion sin
e no more merges or insertions 
an

be made. l

Let Apn, k ´ 1q denote the set of all positive integers not ex
eeding 2n with at most k ´ 1

nonzero digits in its base 2 representation. Sin
e every insertion in
reases the value of S, by

Claim 1, the total number of insertions is at most |Apn, k ´ 1q|. We pro
eed to prove that it is

possible to a
hieve this number of insertions.

Claim 2. Let Apn, k´1q “ ta1, a2, . . . , amu, with a1 ă a2 ă ¨ ¨ ¨ ă am. If after some of Sir Alex's

moves the value of S is aj , with j P t1, 2, . . . , m ´ 1u, then there is a sequen
e of moves after

whi
h the value of S is exa
tly aj`1.

Proof. Suppose S “ aj . Performing all possible merges, we eventually get di�erent powers of 2

in all nonempty 
ells. After that, by Claim 1 there will be at least one empty 
ell, in whi
h we

want to insert aj`1 ´ aj. It remains to show that aj`1 ´ aj is a power of 2.

For this purpose, we noti
e that if aj has less than k ´ 1 nonzero digits in base 2 then

aj`1 “ aj ` 1. Otherwise, we have aj “ 2bk´1 ` ¨ ¨ ¨ ` 2b2 ` 2b1 with b1 ă b2 ă ¨ ¨ ¨ ă bk´1. Then,

adding any number less than 2b1 to aj will result in a number with more than k ´ 1 nonzero
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binary digits. On the other hand, aj ` 2b1 is a sum of k powers of 2, not all distin
t, so by the

Lemma it will be a sum of less then k distin
t powers of 2. This means that aj`1 ´ aj “ 2b1 ,


ompleting the proof. l

Claims 1 and 2 prove that the maximum number of insertions is |Apn, k ´ 1q|. We now


ompute this number.

Claim 3. |Apn, k ´ 1q| “ řk´1

j“0

`
n

j

˘
.

Proof. The number 2n is the only element of Apn, k ´ 1q with n ` 1 binary digits. Any other

element has at most n binary digits, at least one and at most k ´ 1 of them are nonzero (so

they are ones). For ea
h j P t1, 2, . . . , k ´ 1u, there are
`
n

j

˘
su
h elements with exa
tly j binary

digits equal to one. We 
on
lude that |Apn, k ´ 1q| “ 1 ` řk´1

j“1

`
n

j

˘
“ řk´1

j“0

`
n

j

˘
. l

Re
alling that the number of insertions ex
eeds that of merges by exa
tly 1, we dedu
e that

the maximum number of moves is 2
řk´1

j“0

`
n

j

˘
´ 1.
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C4.

Let N ě 2 be an integer. NpN ` 1q so

er players, no two of the same height, stand

in a row in some order. Coa
h Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

Solution 1. Split the row into N blo
ks with N ` 1 
onse
utive people ea
h. We will show

how to remove N ´ 1 people from ea
h blo
k in order to satisfy the 
oa
h's wish.

First, 
onstru
t a pN ` 1q ˆ N matrix where xi,j is the height of the ith tallest person of

the jth blo
k�in other words, ea
h 
olumn lists the heights within a single blo
k, sorted in

de
reasing order from top to bottom.

We will reorder this matrix by repeatedly swapping whole 
olumns. First, by 
olumn per-

mutation, make sure that x2,1 “ maxtx2,i : i “ 1, 2, . . . , Nu (the �rst 
olumn 
ontains the

largest height of the se
ond row). With the �rst 
olumn �xed, permute the other ones so that

x3,2 “ maxtx3,i : i “ 2, . . . , Nu (the se
ond 
olumn 
ontains the tallest person of the third row,

�rst 
olumn ex
luded). In short, at step k (k “ 1, 2, . . . , N ´ 1), we permute the 
olumns from

k to N so that xk`1,k “ maxtxi,k : i “ k, k ` 1, . . . , Nu, and end up with an array like this:

x1,1 x1,2 x1,3 ¨ ¨ ¨ x1,N´1 x1,Ną ą ą ą ą ą ą

x2,1 ąąą x2,2 x2,3 ¨ ¨ ¨ x2,N´1 x2,Ną ą ą ą ą ą ą

x3,1 x3,2 ąąą x3,3 ¨ ¨ ¨ x3,N´1 x3,Ną ą ą ą ą ą ą

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.ą ą ą ą ą ą ą

xN,1 xN,2 xN,3 ¨ ¨ ¨ xN,N´1 ąąą xN,Ną ą ą ą ą ą ą

xN`1,1 xN`1,2 xN`1,3¨ ¨ ¨xN`1,N´1 xN`1,N

Now we make the bold 
hoi
e: from the original row of people, remove everyone but those

with heights

x1,1 ą x2,1 ą x2,2 ą x3,2 ą ¨ ¨ ¨ ą xN,N´1 ą xN,N ą xN`1,N p˚q
Of 
ourse this height order p˚q is not ne
essarily their spatial order in the new row. We now

need to 
onvin
e ourselves that ea
h pair pxk,k; xk`1,kq remains spatially together in this new

row. But xk,k and xk`1,k belong to the same 
olumn/blo
k of 
onse
utive N ` 1 people; the

only people that 
ould possibly stand between them were also in this blo
k, and they are all

gone.

Solution 2. Split the people into N groups by height : group G1 has the N ` 1 tallest ones,

group G2 has the next N `1 tallest, and so on, up to group GN with the N `1 shortest people.

Now s
an the original row from left to right, stopping as soon as you have s
anned two

people (
onse
utively or not) from the same group, say, Gi. Sin
e we have N groups, this must

happen before or at the pN ` 1qth person of the row. Choose this pair of people, removing all

the other people from the same group Gi and also all people that have been s
anned so far.

The only people that 
ould separate this pair's heights were in group Gi (and they are gone);

the only people that 
ould separate this pair's positions were already s
anned (and they are

gone too).

We are now left with N ´ 1 groups (all ex
ept Gi). Sin
e ea
h of them lost at most one

person, ea
h one has at least N uns
anned people left in the row. Repeat the s
anning pro
ess

from left to right, 
hoosing the next two people from the same group, removing this group and
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everyone s
anned up to that point. On
e again we end up with two people who are next to

ea
h other in the remaining row and whose heights 
annot be separated by anyone else who

remains (sin
e the rest of their group is gone). After pi
king these 2 pairs, we still have N ´ 2

groups with at least N ´ 1 people ea
h.

If we repeat the s
anning pro
ess a total of N times, it is easy to 
he
k that we will end

up with 2 people from ea
h group, for a total of 2N people remaining. The height order is

guaranteed by the grouping, and the s
anning 
onstru
tion from left to right guarantees that

ea
h pair from a group stand next to ea
h other in the �nal row. We are done.

Solution 3. This is essentially the same as solution 1, but presented indu
tively. The essen
e

of the argument is the following lemma.

Lemma. Assume that we have N disjoint groups of at least N ` 1 people in ea
h, all people

have distin
t heights. Then one 
an 
hoose two people from ea
h group so that among the


hosen people, the two tallest ones are in one group, the third and the fourth tallest ones are

in one group, . . . , and the two shortest ones are in one group.

Proof. Indu
tion on N ě 1; for N “ 1, the statement is trivial.

Consider now N groups G1, . . . , GN with at least N`1 people in ea
h for N ě 2. Enumerate

the people by 1, 2, . . . , NpN ` 1q a

ording to their height, say, from tallest to shortest. Find

the least s su
h that two people among 1, 2, . . . , s are in one group (without loss of generality,

say this group is GN). By the minimality of s, the two mentioned people in GN are s and some

i ă s.

Now we 
hoose people i and s in GN , forget about this group, and remove the people

1, 2, . . . , s from G1, . . . , GN´1. Due to minimality of s again, ea
h of the obtained groups

G1
1
, . . . , G1

N´1

ontains at least N people. By the indu
tion hypothesis, one 
an 
hoose a pair

of people from ea
h of G1
1
, . . . , G1

N´1
so as to satisfy the required 
onditions. Sin
e all these

people have numbers greater than s, addition of the pair ps, iq from GN does not violate these

requirements. l

To solve the problem, it su�
es now to split the row into N 
ontiguous groups with N ` 1

people in ea
h and apply the Lemma to those groups.

Comment 1. One 
an identify ea
h person with a pair of indi
es pp, hq (p, h P t1, 2, . . . , NpN ` 1qu)
so that the pth person in the row (say, from left to right) is the hth tallest person in the group. Say

that pa, bq separates px1, y1q and px2, y2q whenever a is stri
tly between x1 and y1, or b is stri
tly

between x2 and y2. So the 
oa
h wants to pi
k 2N people ppi, hiqpi “ 1, 2, . . . , 2Nq su
h that no 
hosen

person separates pp1, h1q from pp2, h2q, no 
hosen person separates pp3, h3q and pp4, h4q, and so on.

This formulation reveals a duality between positions and heights. In that sense, solutions 1 and 2 are

dual of ea
h other.

Comment 2. The number NpN ` 1q is sharp for N “ 2 and N “ 3, due to arrangements 1, 5, 3, 4, 2
and 1, 10, 6, 4, 3, 9, 5, 8, 7, 2, 11.
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C5.

A hunter and an invisible rabbit play a game in the Eu
lidean plane. The hunter's

starting point H0 
oin
ides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.

(1) First the invisible rabbit moves se
retly and unobserved from its 
urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.

(2) The hunter has a tra
king devi
e (e.g. dog) that returns an approximate position R1
n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.

Is there a strategy for the hunter that guarantees that after 109 su
h rounds the distan
e

between the hunter and the rabbit is below 100?

(Austria)

Answer: There is no su
h strategy for the hunter. The rabbit �wins".

Solution. If the answer were �yes", the hunter would have a strategy that would �work", no

matter how the rabbit moved or where the radar pings R1
n appeared. We will show the opposite:

with bad lu
k from the radar pings, there is no strategy for the hunter that guarantees that

the distan
e stays below 100 in 109 rounds.

So, let dn be the distan
e between the hunter and the rabbit after n rounds. Of 
ourse, if

dn ě 100 for any n ă 109, the rabbit has won � it just needs to move straight away from the

hunter, and the distan
e will be kept at or above 100 thereon.

We will now show that, while dn ă 100, whatever given strategy the hunter follows, the

rabbit has a way of in
reasing d2n by at least

1

2
every 200 rounds (as long as the radar pings are

lu
ky enough for the rabbit). This way, d2n will rea
h 104 in less than 2 ¨104 ¨200 “ 4 ¨106 ă 109

rounds, and the rabbit wins.

Suppose the hunter is at Hn and the rabbit is at Rn. Suppose even that the rabbit reveals

its position at this moment to the hunter (this allows us to ignore all information from previous

radar pings). Let r be the line HnRn, and Y1 and Y2 be points whi
h are 1 unit away from r

and 200 units away from Rn, as in the �gure below.

r dn

Hn Rn

200

200

200− dn

Z

1

1

Y1

Y2

ε

y

y

R′
H ′

The rabbit's plan is simply to 
hoose one of the points Y1 or Y2 and hop 200 rounds straight

towards it. Sin
e all hops stay within 1 distan
e unit from r, it is possible that all radar pings

stay on r. In parti
ular, in this 
ase, the hunter has no way of knowing whether the rabbit


hose Y1 or Y2.

Looking at su
h pings, what is the hunter going to do? If the hunter's strategy tells him to

go 200 rounds straight to the right, he ends up at point H 1
in the �gure. Note that the hunter

does not have a better alternative! Indeed, after these 200 rounds he will always end up at

a point to the left of H 1
. If his strategy took him to a point above r, he would end up even

further from Y2; and if his strategy took him below r, he would end up even further from Y1.

In other words, no matter what strategy the hunter follows, he 
an never be sure his distan
e

to the rabbit will be less than y
def“ H 1Y1 “ H 1Y2 after these 200 rounds.

To estimate y2, we take Z as the midpoint of segment Y1Y2, we take R
1
as a point 200 units

to the right of Rn and we de�ne ε “ ZR1
(note that H 1R1 “ dn). Then
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y2 “ 1 ` pH 1Zq2 “ 1 ` pdn ´ εq2

where

ε “ 200 ´ RnZ “ 200 ´
?
2002 ´ 1 “ 1

200 `
?
2002 ´ 1

ą 1

400
.

In parti
ular, ε2 ` 1 “ 400ε, so

y2 “ d2n ´ 2εdn ` ε2 ` 1 “ d2n ` εp400 ´ 2dnq.

Sin
e ε ą 1

400
and we assumed dn ă 100, this shows that y2 ą d2n` 1

2
. So, as we 
laimed, with this

list of radar pings, no matter what the hunter does, the rabbit might a
hieve d2n`200
ą d2n ` 1

2
.

The wabbit wins.

Comment 1. Many di�erent versions of the solution above 
an be found by repla
ing 200 with some

other number N for the number of hops the rabbit takes between reveals. If this is done, we have:

ε “ N ´
a
N2 ´ 1 ą 1

N `
?
N2 ´ 1

ą 1

2N

and

ε2 ` 1 “ 2Nε,

so, as long as N ą dn, we would �nd

y2 “ d2n ` εp2N ´ 2dnq ą d2n ` N ´ dn

N
.

For example, taking N “ 101 is already enough�the squared distan
e in
reases by at least

1

101
every

101 rounds, and 1012 ¨ 104 “ 1.0201 ¨ 108 ă 109 rounds are enough for the rabbit. If the statement is

made sharper, some su
h versions might not work any longer.

Comment 2. The original statement asked whether the distan
e 
ould be kept under 1010 in 10100

rounds.
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n 
ube is 
omposed of n3
unit 
ubes. Ea
h

unit 
ube is painted with one 
olor. For ea
h n ˆ n ˆ 1 box 
onsisting of n2
unit 
ubes (of any

of the three possible orientations), we 
onsider the set of the 
olors present in that box (ea
h


olor is listed only on
e). This way, we get 3n sets of 
olors, split into three groups a

ording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of 
olors that are

present.

(Russia)

Answer: The maximal number is

npn`1qp2n`1q
6

.

Solution 1. Call a n ˆ n ˆ 1 box an x-box, a y-box, or a z-box, a

ording to the dire
tion of

its short side. Let C be the number of 
olors in a valid 
on�guration. We start with the upper

bound for C.

Let C1, C2, and C3 be the sets of 
olors whi
h appear in the big 
ube exa
tly on
e, exa
tly

twi
e, and at least thri
e, respe
tively. Let Mi be the set of unit 
ubes whose 
olors are in Ci,
and denote ni “ |Mi|.

Consider any x-box X , and let Y and Z be a y- and a z-box 
ontaining the same set of


olors as X does.

Claim. 4|X X M1| ` |X X M2| ď 3n ` 1.

Proof. We distinguish two 
ases.

Case 1: X X M1 ‰ ∅.

A 
ube from X X M1 should appear in all three boxes X , Y , and Z, so it should lie in

X X Y X Z. Thus X X M1 “ X X Y X Z and |X X M1| “ 1.

Consider now the 
ubes in X X M2. There are at most 2pn ´ 1q of them lying in X X Y or

X X Z (be
ause the 
ube from X X Y X Z is in M1). Let a be some other 
ube from X X M2.

Re
all that there is just one other 
ube a1
sharing a 
olor with a. But both Y and Z should


ontain su
h 
ube, so a1 P Y X Z (but a1 R X X Y X Z). The map a ÞÑ a1
is 
learly inje
tive,

so the number of 
ubes a we are interested in does not ex
eed |pY X Zq z X| “ n ´ 1. Thus

|XXM2| ď 2pn´1q`pn´1q “ 3pn´1q, and hen
e 4|XXM1|`|XXM2| ď 4`3pn´1q “ 3n`1.

Case 2: X X M1 “ ∅.

In this 
ase, the same argument applies with several 
hanges. Indeed, X X M2 
ontains

at most 2n ´ 1 
ubes from X X Y or X X Z. Any other 
ube a in X X M2 
orresponds to

some a1 P Y X Z (possibly with a1 P X), so there are at most n of them. All this results in

|X X M2| ď p2n ´ 1q ` n “ 3n ´ 1, whi
h is even better than we need (by the assumptions of

our 
ase). l

Summing up the inequalities from the Claim over all x-boxes X , we obtain

4n1 ` n2 ď np3n ` 1q.

Obviously, we also have n1 ` n2 ` n3 “ n3
.

Now we are prepared to estimate C. Due to the de�nition of the Mi, we have ni ě i|Ci|, so

C ď n1 ` n2

2
` n3

3
“ n1 ` n2 ` n3

3
` 4n1 ` n2

6
ď n3

3
` 3n2 ` n

6
“ npn ` 1qp2n ` 1q

6
.

It remains to present an example of an appropriate 
oloring in the above-mentioned number

of 
olors. For ea
h 
olor, we present the set of all 
ubes of this 
olor. These sets are:

1. n singletons of the form Si “ tpi, i, iqu (with 1 ď i ď n);

2. 3
`
n

2

˘
doubletons of the forms D1

i,j “ tpi, j, jq, pj, i, iqu, D2

i,j “ tpj, i, jq, pi, j, iqu, and D3

i,j “
tpj, j, iq, pi, i, jqu (with 1 ď i ă j ď n);
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3. 2
`
n

3

˘
triplets of the form Ti,j,k “ tpi, j, kq, pj, k, iq, pk, i, jqu (with 1 ď i ă j ă k ď n or

1 ď i ă k ă j ď n).

One may easily see that the ith boxes of ea
h orientation 
ontain the same set of 
olors, and

that

n ` 3npn ´ 1q
2

` npn ´ 1qpn ´ 2q
3

“ npn ` 1qp2n ` 1q
6


olors are used, as required.

Solution 2. We will approa
h a new version of the original problem. In this new version, ea
h


ube may have a 
olor, or be invisible (not both). Now we make sets of 
olors for ea
h nˆnˆ1

box as before (where �invisible" is not 
onsidered a 
olor) and group them by orientation, also

as before. Finally, we require that, for every non-empty set in any group, the same set must

appear in the other 2 groups. What is the maximum number of 
olors present with these new

requirements?

Let us 
all strange a big nˆnˆn 
ube whose painting s
heme satis�es the new requirements,

and let D be the number of 
olors in a strange 
ube. Note that any 
ube that satis�es the

original requirements is also strange, so maxpDq is an upper bound for the original answer.

Claim. D ď npn`1qp2n`1q
6

.

Proof. The proof is by indu
tion on n. If n “ 1, we must paint the 
ube with at most 1 
olor.

Now, pi
k a nˆnˆn strange 
ube A, where n ě 2. If A is 
ompletely invisible, D “ 0 and

we are done. Otherwise, pi
k a non-empty set of 
olors S whi
h 
orresponds to, say, the boxes

X , Y and Z of di�erent orientations.

Now �nd all 
ubes in A whose 
olors are in S and make them invisible. Sin
e X , Y

and Z are now 
ompletely invisible, we 
an throw them away and fo
us on the remaining

pn ´ 1q ˆ pn ´ 1q ˆ pn ´ 1q 
ube B. The sets of 
olors in all the groups for B are the same

as the sets for A, removing exa
tly the 
olors in S, and no others! Therefore, every nonempty

set that appears in one group for B still shows up in all possible orientations (it is possible

that an empty set of 
olors in B only mat
hed X , Y or Z before these were thrown away, but

remember we do not require empty sets to mat
h anyway). In summary, B is also strange.

By the indu
tion hypothesis, we may assume that B has at most

pn´1qnp2n´1q
6


olors. Sin
e

there were at most n2
di�erent 
olors in S, we have that A has at most

pn´1qnp2n´1q
6

` n2 “
npn`1qp2n`1q

6

olors. l

Finally, the 
onstru
tion in the previous solution shows a painting s
heme (with no invisible


ubes) that rea
hes this maximum, so we are done.
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C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . qlooooooooooooooooooomooooooooooooooooooon
A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . qlooooooooooooooooooomooooooooooooooooooon
B appears a times

.

(U.S.A.)

Solution 1. For any fun
tion g : Zą0 Ñ Zą0 and any subset X Ă Zą0, we de�ne gpXq “
tgpxq : x P Xu. We have that the image of fX is fXpZą0q “ Zą0 z X . We now show a general

lemma about the operation ˚, with the goal of showing that ˚ is asso
iative.

Lemma 1. Let X and Y be �nite sets of positive integers. The fun
tions fX˚Y and fX ˝ fY are

equal.

Proof. We have

fX˚Y pZą0q “ Zą0zpX˚Y q “ pZą0zXqzfXpY q “ fXpZą0qzfXpY q “ fXpZą0zY q “ fXpfY pZą0qq.

Thus, the fun
tions fX˚Y and fX ˝ fY are stri
tly in
reasing fun
tions with the same range.

Be
ause a stri
tly fun
tion is uniquely de�ned by its range, we have fX˚Y “ fX ˝ fY . l

Lemma 1 implies that ˚ is asso
iative, in the sense that pA ˚ Bq ˚ C “ A ˚ pB ˚ Cq for any

�nite sets A,B, and C of positive integers. We prove the asso
iativity by noting

Zą0 z ppA ˚ Bq ˚ Cq “ fpA˚Bq˚CpZą0q “ fA˚BpfCpZą0qq “ fApfBpfCpZą0qqq

“ fApfB˚CpZą0q “ fA˚pB˚CqpZą0q “ Zą0 z pA ˚ pB ˚ Cqq.
In light of the asso
iativity of ˚, we may drop the parentheses when we write expressions

like A ˚ pB ˚ Cq. We also introdu
e the notation

X˚k “ X ˚ pX ˚ ¨ ¨ ¨ ˚ pX ˚ pX ˚ Xqq . . . qloooooooooooooooooooomoooooooooooooooooooon
X appears k times

.

Our goal is then to show that A ˚B “ B ˚A implies A˚b “ B˚a
. We will do so via the following

general lemma.

Lemma 2. Suppose that X and Y are �nite sets of positive integers satisfying X ˚ Y “ Y ˚ X
and |X| “ |Y |. Then, we must have X “ Y .

Proof. Assume that X and Y are not equal. Let s be the largest number in exa
tly one of

X and Y . Without loss of generality, say that s P X z Y . The number fXpsq 
ounts the sth

number not in X , whi
h implies that

fXpsq “ s `
ˇ̌
X X t1, 2, . . . , fXpsqu

ˇ̌
. (1)

Sin
e fXpsq ě s, we have that

 
fXpsq ` 1, fXpsq ` 2, . . .

(
X X “

 
fXpsq ` 1, fXpsq ` 2, . . .

(
X Y,

whi
h, together with the assumption that |X| “ |Y |, gives
ˇ̌
X X t1, 2, . . . , fXpsqu

ˇ̌
“
ˇ̌
Y X t1, 2, . . . , fXpsqu

ˇ̌
. (2)
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Now 
onsider the equation

t ´
ˇ̌
Y X t1, 2, . . . , tu

ˇ̌
“ s.

This equation is satis�ed only when t P
“
fY psq, fY ps ` 1q

˘
, be
ause the left hand side 
ounts

the number of elements up to t that are not in Y . We have that the value t “ fXpsq satis�es
the above equation be
ause of (1) and (2). Furthermore, sin
e fXpsq R X and fXpsq ě s, we

have that fXpsq R Y due to the maximality of s. Thus, by the above dis
ussion, we must have

fXpsq “ fY psq.
Finally, we arrive at a 
ontradi
tion. The value fXpsq is neither in X nor in fXpY q, be
ause

s is not in Y by assumption. Thus, fXpsq R X ˚Y . However, sin
e s P X , we have fY psq P Y ˚X ,

a 
ontradi
tion. l

We are now ready to �nish the proof. Note �rst of all that |A˚b| “ ab “ |B˚a|. Moreover,

sin
e A ˚ B “ B ˚ A, and ˚ is asso
iative, it follows that A˚b ˚ B˚a “ B˚a ˚ A˚b
. Thus, by

Lemma 2, we have A˚b “ B˚a
, as desired.

Comment 1. Taking A “ X˚k
and B “ X˚l

generates many non-trivial examples where A˚B “ B˚A.
There are also other examples not of this form. For example, if A “ t1, 2, 4u and B “ t1, 3u, then
A ˚ B “ t1, 2, 3, 4, 6u “ B ˚ A.

Solution 2. We will use Lemma 1 from Solution 1. Additionally, let X˚k
be de�ned as in

Solution 1. If X and Y are �nite sets, then

fX “ fY ðñ fXpZą0q “ fY pZą0q ðñ pZą0 z Xq “ pZą0 z Y q ðñ X “ Y, (3)

where the �rst equivalen
e is be
ause fX and fY are stri
tly in
reasing fun
tions, and the se
ond

equivalen
e is be
ause fXpZą0q “ Zą0 z X and fY pZą0q “ Zą0 z Y .
Denote g “ fA and h “ fB. The given relation A ˚ B “ B ˚ A is equivalent to fA˚B “ fB˚A

be
ause of (3), and by Lemma 1 of the �rst solution, this is equivalent to g˝h “ h˝g. Similarly,

the required relation A˚b “ B˚a
is equivalent to gb “ ha

. We will show that

gbpnq “ hapnq (4)

for all n P Zą0, whi
h su�
es to solve the problem.

To start, we 
laim that (4) holds for all su�
iently large n. Indeed, let p and q be the

maximal elements of A and B, respe
tively; we may assume that p ě q. Then, for every n ě p

we have gpnq “ n ` a and hpnq “ n ` b, when
e gbpnq “ n ` ab “ hapnq, as was 
laimed.

In view of this 
laim, if (4) is not identi
ally true, then there exists a maximal s with gbpsq ‰
hapsq. Without loss of generality, we may assume that gpsq ‰ s, for if we had gpsq “ hpsq “ s,

then s would satisfy (4). As g is in
reasing, we then have gpsq ą s, so (4) holds for n “ gpsq.
But then we have

gpgbpsqq “ gb`1psq “ gbpnq “ hapnq “ hapgpsqq “ gphapsqq,
where the last equality holds in view of g ˝ h “ h ˝ g. By the inje
tivity of g, the above

equality yields gbpsq “ hapsq, whi
h 
ontradi
ts the 
hoi
e of s. Thus, we have proved that (4)

is identi
ally true on Zą0, as desired.

Comment 2. We present another proof of Lemma 2 of the �rst solution.

Let x “ |X| “ |Y |. Say that u is the smallest number in X and v is the smallest number in Y ;

assume without loss of generality that u ď v.

Let T be any �nite set of positive integers, and de�ne t “ |T |. Enumerate the elements of X as

x1 ă x2 ă ¨ ¨ ¨ ă xn. De�ne Sm “ fpT˚X˚pm´1qqpXq, and enumerate its elements sm,1 ă sm,2 ă ¨ ¨ ¨ ă
sm,n. Note that the Sm are pairwise disjoint; indeed, if we have m ă m1

, then

Sm Ă T ˚ X˚m Ă T ˚ X˚pm1´1q
and Sm1 “ pT ˚ X˚m1 q z pT ˚ X˚pm1´1qq

We 
laim the following statement, whi
h essentially says that the Sm are eventually linear translates

of ea
h other:
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Claim. For every i, there exists somemi and ci su
h that for allm ą mi, we have that sm,i “ t`mn´ci.

Furthermore, the ci do not depend on the 
hoi
e of T .

First, we show that this 
laim implies Lemma 2. We may 
hoose T “ X and T “ Y . Then, there

is some m1
su
h that for all m ě m1

, we have

fX˚mpXq “ fpY ˚X˚pm´1qqpXq. (5)

Be
ause u is the minimum element of X, v is the minimum element of Y , and u ď v, we have that

˜
8ď

m“m1

fX˚mpXq
¸

Y X˚m1 “
˜

8ď

m“m1

fpY ˚X˚pm´1qqpXq
¸

Y
`
Y ˚ X˚pm1´1q

˘
“ tu, u ` 1, . . . u,

and in both the �rst and se
ond expressions, the unions are of pairwise distin
t sets. By (5), we obtain

X˚m1 “ Y ˚X˚pm1´1q
. Now, be
ause X and Y 
ommute, we get X˚m1 “ X˚pm1´1q ˚Y , and so X “ Y .

We now prove the 
laim.

Proof of the 
laim. We indu
t downwards on i, �rst proving the statement for i “ n, and so on.

Assume that m is 
hosen so that all elements of Sm are greater than all elements of T (whi
h is

possible be
ause T is �nite). For i “ n, we have that sm,n ą sk,n for every k ă m. Thus, all pm ´ 1qn
numbers of the form sk,u for k ă m and 1 ď u ď n are less than sm,n. We then have that sm,n is the

ppm´1qn`xnqth number not in T , whi
h is equal to t` pm´1qn`xn. So we may 
hoose cn “ xn ´n,

whi
h does not depend on T , whi
h proves the base 
ase for the indu
tion.

For i ă n, we have again that all elements sm,j for j ă i and sp,i for p ă m are less than sm,i,

so sm,i is the ppm ´ 1qi ` xiqth element not in T or of the form sp,j for j ą i and p ă m. But by

the indu
tive hypothesis, ea
h of the sequen
es sp,j is eventually periodi
 with period n, and thus the

sequen
e sm,i su
h must be as well. Sin
e ea
h of the sequen
es sp,j ´ t with j ą i eventually do not

depend on T , the sequen
e sm,i ´ t eventually does not depend on T either, so the indu
tive step is


omplete. This proves the 
laim and thus Lemma 2. l
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C8.

Let n be a given positive integer. In the Cartesian plane, ea
h latti
e point with

nonnegative 
oordinates initially 
ontains a butter�y, and there are no other butter�ies. The

neighborhood of a latti
e point c 
onsists of all latti
e points within the axis-aligned p2n` 1q ˆ
p2n ` 1q square 
entered at c, apart from c itself. We 
all a butter�y lonely, 
rowded, or 
om-

fortable, depending on whether the number of butter�ies in its neighborhood N is respe
tively

less than, greater than, or equal to half of the number of latti
e points in N .

Every minute, all lonely butter�ies �y away simultaneously. This pro
ess goes on for as

long as there are any lonely butter�ies. Assuming that the pro
ess eventually stops, determine

the number of 
omfortable butter�ies at the �nal state.

(Bulgaria)

Answer: n2 ` 1.

Solution.We always identify a butter�y with the latti
e point it is situated at. For two points p

and q, we write p ě q if ea
h 
oordinate of p is at least the 
orresponding 
oordinate of q. Let

O be the origin, and let Q be the set of initially o

upied points, i.e., of all latti
e points with

nonnegative 
oordinates. Let RH “ tpx, 0q : x ě 0u and RV “ tp0, yq : y ě 0u be the sets of

the latti
e points lying on the horizontal and verti
al boundary rays of Q. Denote by Npaq the
neighborhood of a latti
e point a.

1. Initial observations. We 
all a set of latti
e points up-right 
losed if its points stay in the

set after being shifted by any latti
e ve
tor pi, jq with i, j ě 0. Whenever the butter�ies form a

up-right 
losed set S, we have |Nppq X S| ě |Npqq X S| for any two points p, q P S with p ě q.

So, sin
e Q is up-right 
losed, the set of butter�ies at any moment also preserves this property.

We assume all forth
oming sets of latti
e points to be up-right 
losed.

When speaking of some set S of latti
e points, we 
all its points lonely, 
omfortable, or


rowded with respe
t to this set (i.e., as if the butter�ies were exa
tly at all points of S). We


all a set S Ă Q stable if it 
ontains no lonely points. In what follows, we are interested only

in those stable sets whose 
omplements in Q are �nite, be
ause one 
an easily see that only a

�nite number of butter�ies 
an �y away on ea
h minute.

If the initial set Q of butter�ies 
ontains some stable set S, then, 
learly no butter�y of

this set will �y away. On the other hand, the set F of all butter�ies in the end of the pro
ess

is stable. This means that F is the largest (with respe
t to in
lusion) stable set within Q, and

we are about to des
ribe this set.

2. A des
ription of a �nal set. The following notion will be useful. Let U “ t~u1, ~u2, . . . , ~udu
be a set of d pairwise non-parallel latti
e ve
tors, ea
h having a positive x- and a negative

y-
oordinate. Assume that they are numbered in in
reasing order a

ording to slope. We now

de�ne a U-
urve to be the broken line p0p1 . . . pd su
h that p0 P RV, pd P RH, and
ÝÝÝÑpi´1pi “ ~ui

for all i “ 1, 2, . . . , m (see the Figure below to the left).

~u1

~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2 ~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3

~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4

~u1

~u2

~u3

~u4 O

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4

−
→

−→

r1 r2 r3 r4 (k4 = 3)

~v1
~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3~v3 ~v4

O

Kn

d0

d1
d2

d3

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Constru
tion of U-
urve Constru
tion of D
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Now, let Kn “ tpi, jq : 1 ď i ď n, ´n ď j ď ´1u. Consider all the rays emerging at O and

passing through a point from Kn; number them as r1, . . . , rm in in
reasing order a

ording to

slope. Let Ai be the farthest from O latti
e point in ri X Kn, set ki “ |ri X Kn|, let ~vi “ ÝÝÑ
OAi,

and �nally denote V “ t~vi : 1 ď i ď mu; see the Figure above to the right. We will 
on
entrate

on the V-
urve d0d1 . . . dm; let D be the set of all latti
e points p su
h that p ě p1
for some (not

ne
essarily latti
e) point p1
on the V-
urve. In fa
t, we will show that D “ F .

Clearly, the V-
urve is symmetri
 in the line y “ x. Denote by D the 
onvex hull of D.

3. We prove that the set D 
ontains all stable sets. Let S Ă Q be a stable set (re
all that

it is assumed to be up-right 
losed and to have a �nite 
omplement in Q). Denote by S its


onvex hull; 
learly, the verti
es of S are latti
e points. The boundary of S 
onsists of two rays

(horizontal and verti
al ones) along with some V˚-
urve for some set of latti
e ve
tors V˚.

Claim 1. For every ~vi P V, there is a ~v ˚
i P V˚ 
o-dire
ted with ~v with |~v ˚

i | ě |~v|.
Proof. Let ℓ be the supporting line of S parallel to ~vi (i.e., ℓ 
ontains some point of S, and

the set S lies on one side of ℓ). Take any point b P ℓ X S and 
onsider Npbq. The line ℓ splits

the set Npbq z ℓ into two 
ongruent parts, one having an empty interse
tion with S. Hen
e, in
order for b not to be lonely, at least half of the set ℓ X Npbq (whi
h 
ontains 2ki points) should

lie in S. Thus, the boundary of S 
ontains a segment ℓ X S with at least ki ` 1 latti
e points

(in
luding b) on it; this segment 
orresponds to the required ve
tor ~v ˚
i P V˚. l
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~v ∗
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~v ∗

3

~v ∗

4

p
p′

∂D

∂S

Proof of Claim 1 Proof of Claim 2

Claim 2. Ea
h stable set S Ď Q lies in D.

Proof. To show this, it su�
es to prove that the V˚-
urve lies in D, i.e., that all its verti
es

do so. Let p1
be an arbitrary vertex of the V˚-
urve; p

1
partitions this 
urve into two parts, X

(being down-right of p) and Y (being up-left of p). The set V is split now into two parts: VX


onsisting of those ~vi P V for whi
h ~v ˚
i 
orresponds to a segment in X , and a similar part VY .

Noti
e that the V-
urve 
onsists of several segments 
orresponding to VX , followed by those


orresponding to VY . Hen
e there is a vertex p of the V-
urve separating VX from VY . Claim 1

now yields that p1 ě p, so p1 P D, as required. l

Claim 2 implies that the �nal set F is 
ontained in D.

4. D is stable, and its 
omfortable points are known. Re
all the de�nitions of ri; let r
1
i be the

ray 
omplementary to ri. By our de�nitions, the set NpOq 
ontains no points between the rays

ri and ri`1, as well as between r1
i and r1

i`1
.

Claim 3. In the set D, all latti
e points of the V-
urve are 
omfortable.

Proof. Let p be any latti
e point of the V-
urve, belonging to some segment didi`1. Draw the

line ℓ 
ontaining this segment. Then ℓXD 
ontains exa
tly ki `1 latti
e points, all of whi
h lie

in Nppq ex
ept for p. Thus, exa
tly half of the points in Nppq X ℓ lie in D. It remains to show

that all points of Nppq above ℓ lie in D (re
all that all the points below ℓ la
k this property).
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Noti
e that ea
h ve
tor in V has one 
oordinate greater than n{2; thus the neighborhood

of p 
ontains parts of at most two segments of the V-
urve su

eeding didi`1, as well as at most

two of those pre
eding it.

The angles formed by these 
onse
utive segments are obtained from those formed by rj and

r1
j´1

(with i ´ 1 ď j ď i ` 2) by shifts; see the Figure below. All the points in Nppq above ℓ

whi
h 
ould lie outside D lie in shifted angles between rj, rj`1 or r1
j, r

1
j´1

. But those angles,

restri
ted to Nppq, have no latti
e points due to the above remark. The 
laim is proved. l

Kn

ri−1

ri

ri+1

ri+2

r′
i+2

r′
i−1

p

di

di+1

di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2

Proof of Claim 3

Claim 4. All the points of D whi
h are not on the boundary of D are 
rowded.

Proof. Let p P D be su
h a point. If it is to the up-right of some point p1
on the 
urve, then the


laim is easy: the shift of Npp1q X D by

ÝÑ
p1p is still in D, and Nppq 
ontains at least one more

point of D � either below or to the left of p. So, we may assume that p lies in a right triangle


onstru
ted on some hypothenuse didi`1. Noti
e here that di, di`1 P Nppq.
Draw a line ℓ ‖ didi`1 through p, and draw a verti
al line h through di; see Figure below.

Let DL and DR be the parts of D lying to the left and to the right of h, respe
tively (points

of D X h lie in both parts).

dididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididi

di+1

p

h

ℓ

p
di

di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1

−→

Proof of Claim 4

Noti
e that the ve
tors

ÝÑ
dip,

ÝÝÝÝÝÑ
di`1di`2,

ÝÝÝÑ
didi`1,

ÝÝÝÑ
di´1di, and

ÝÝÝÑ
pdi`1 are arranged in non-in
reasing

order by slope. This means that DL shifted by

ÝÑ
dip still lies in D, as well as DR shifted by

ÝÝÝÑ
di`1p.

As we have seen in the proof of Claim 3, these two shifts 
over all points of Nppq above ℓ, along
with those on ℓ to the left of p. Sin
e Nppq 
ontains also di and di`1, the point p is 
rowded.

l

Thus, we have proved that D “ F , and have shown that the latti
e points on the V-
urve
are exa
tly the 
omfortable points of D. It remains to �nd their number.

Re
all the de�nition of Kn (see Figure on the �rst page of the solution). Ea
h segment didi`1


ontains ki latti
e points di�erent from di. Taken over all i, these points exhaust all the latti
e

points in the V-
urve, ex
ept for d1, and thus the number of latti
e points on the V-
urve is

1 ` řm

i“1
ki. On the other hand,

řm

i“1
ki is just the number of points in Kn, so it equals n2

.

Hen
e the answer to the problem is n2 ` 1.
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Comment 1. The assumption that the pro
ess eventually stops is unne
essary for the problem, as

one 
an see that, in fa
t, the pro
ess stops for every n ě 1. Indeed, the proof of Claims 3 and 4 do not

rely essentially on this assumption, and they together yield that the set D is stable. So, only butter�ies

that are not in D may �y away, and this takes only a �nite time.

This assumption has been inserted into the problem statement in order to avoid several te
hni
al

details regarding �niteness issues. It may also simplify several other arguments.

Comment 2. The des
ription of the �nal set Fp“ Dq seems to be 
ru
ial for the solution; the

Problem Sele
tion Committee is not aware of any solution that 
ompletely avoids su
h a des
ription.

On the other hand, after the set D has been de�ned, the further steps may be performed in several

ways. For example, in order to prove that all butter�ies outside D will �y away, one may argue as

follows. (Here we will also make use of the assumption that the pro
ess eventually stops.)

First of all, noti
e that the pro
ess 
an be modi�ed in the following manner: Ea
h minute, exa
tly

one of the lonely butter�ies �ies away, until there are no more lonely butter�ies. The modi�ed pro
ess

ne
essarily stops at the same state as the initial one. Indeed, one may observe, as in solution above,

that the (unique) largest stable set is still the �nal set for the modi�ed pro
ess.

Thus, in order to prove our 
laim, it su�
es to indi
ate an order in whi
h the butter�ies should �y

away in the new pro
ess; if we are able to exhaust the whole set Q z D, we are done.
Let C0 “ d0d1 . . . dm be the V-
urve. Take its 
opy C and shift it downwards so that d0 
omes to

some point below the origin O. Now we start moving C upwards 
ontinuously, until it 
omes ba
k to its

initial position C0. At ea
h moment when C meets some latti
e points, we 
onvin
e all the butter�ies at

those points to �y away in a 
ertain order. We will now show that we always have enough arguments

for butter�ies to do so, whi
h will �nish our argument for the 
laim..

Let C1 “ d1
0
d1
1
. . . d1

m be a position of C when it meets some butter�ies. We assume that all butter�ies

under this 
urrent position of C were already 
onvin
ed enough and �ied away. Consider the lowest

butter�y b on C1
. Let d1

id
1
i`1

be the segment it lies on; we 
hoose i so that b ‰ d1
i`1

(this is possible

be
ause C as not yet rea
hed C0).
Draw a line ℓ 
ontaining the segment d1

id
1
i`1

. Then all the butter�ies in Npbq are situated on or

above ℓ; moreover, those on ℓ all lie on the segment didi`1. But this segment now 
ontains at most ki
butter�ies (in
luding b), sin
e otherwise some butter�y had to o

upy d1

i`1
whi
h is impossible by the


hoi
e of b. Thus, b is lonely and hen
e may be 
onvin
ed to �y away.

After b has �ied away, we swit
h to the lowest of the remaining butter�ies on C1
, and so on.

Claims 3 and 4 also allow some di�erent proofs whi
h are not presented here.
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Geometry

G1.

Let ABCDE be a 
onvex pentagon su
h that AB “ BC “ CD, =EAB “ =BCD, and

=EDC “ =CBA. Prove that the perpendi
ular line from E to BC and the line segments AC

and BD are 
on
urrent.

(Italy)

Solution 1. Throughout the solution, we refer to =A, =B, =C, =D, and =E as internal

angles of the pentagon ABCDE. Let the perpendi
ular bise
tors of AC and BD, whi
h pass

respe
tively through B and C, meet at point I. Then BD K CI and, similarly, AC K BI.

Hen
e AC and BD meet at the ortho
enter H of the triangle BIC, and IH K BC. It remains

to prove that E lies on the line IH or, equivalently, EI K BC.

Lines IB and IC bise
t =B and =C, respe
tively. Sin
e IA “ IC, IB “ ID, and AB “
BC “ CD, the triangles IAB, ICB and ICD are 
ongruent. Hen
e =IAB “ =ICB “
=C{2 “ =A{2, so the line IA bise
ts =A. Similarly, the line ID bise
ts =D. Finally, the

line IE bise
ts =E be
ause I lies on all the other four internal bise
tors of the angles of the

pentagon.

The sum of the internal angles in a pentagon is 5400
, so

=E “ 5400 ´ 2=A ` 2=B.

In quadrilateral ABIE,

=BIE “ 3600 ´ =EAB ´ =ABI ´ =AEI “ 3600 ´ =A ´ 1

2
=B ´ 1

2
=E

“ 3600 ´ =A ´ 1

2
=B ´ p2700 ´ =A ´ =Bq

“ 900 ` 1

2
=B “ 900 ` =IBC,

whi
h means that EI K BC, 
ompleting the proof.

A

E

D

B T C

I

H

Solution 2. We present another proof of the fa
t that E lies on line IH . Sin
e all �ve internal

bise
tors of ABCDE meet at I, this pentagon has an ins
ribed 
ir
le with 
enter I. Let this


ir
le tou
h side BC at T .

Applying Brian
hon's theorem to the (degenerate) hexagon ABTCDE we 
on
lude that

AC, BD and ET are 
on
urrent, so point E also lies on line IHT , 
ompleting the proof.
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Solution 3. We present yet another proof that EI K BC. In pentagon ABCDE, =E ă
1800 ðñ =A ` =B ` =C ` =D ą 3600

. Then =A ` =B “ =C ` =D ą 1800
, so rays EA

and CB meet at a point P , and rays BC and ED meet at a point Q. Now,

=PBA “ 1800 ´ =B “ 1800 ´ =D “ =QDC

and, similarly, =PAB “ =QCD. Sin
e AB “ CD, the triangles PAB and QCD are 
ongruent

with the same orientation. Moreover, PQE is isos
eles with EP “ EQ.

A

E

B C

I

H

P Q

D

In Solution 1 we have proved that triangles IAB and ICD are also 
ongruent with the

same orientation. Then we 
on
lude that quadrilaterals PBIA and QDIC are 
ongruent,

whi
h implies IP “ IQ. Then EI is the perpendi
ular bise
tor of PQ and, therefore, EI K
PQ ðñ EI K BC.

Comment. Even though all three solutions used the point I, there are solutions that do not need it.

We present an outline of su
h a solution: if J is the in
enter of △QCD (with P and Q as de�ned in

Solution 3), then a simple angle 
hasing shows that triangles CJD and BHC are 
ongruent. Then if

S is the proje
tion of J onto side CD and T is the orthogonal proje
tion of H onto side BC, one 
an

verify that

QT “ QC ` CT “ QC ` DS “ QC ` CD ` DQ ´ QC

2
“ PB ` BC ` QC

2
“ PQ

2
,

so T is the midpoint of PQ, and E, H and T all lie on the perpendi
ular bise
tor of PQ.
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G2.

Let R and S be distin
t points on 
ir
le Ω, and let t denote the tangent line to Ω at R.

Point R1
is the re�e
tion of R with respe
t to S. A point I is 
hosen on the smaller ar
 RS of

Ω so that the 
ir
um
ir
le Γ of triangle ISR1
interse
ts t at two di�erent points. Denote by A

the 
ommon point of Γ and t that is 
losest to R. Line AI meets Ω again at J . Show that JR1

is tangent to Γ.

(Luxembourg)

Solution 1. In the 
ir
les Ω and Γ we have =JRS “ =JIS “ =AR1S. On the other hand,

sin
e RA is tangent to Ω, we get =SJR “ =SRA. So the triangles ARR1
and SJR are similar,

and

R1R

RJ
“ AR1

SR
“ AR1

SR1
.

The last relation, together with =AR1S “ =JRR1
, yields △ASR1 „ △R1JR, hen
e

=SAR1 “ =RR1J . It follows that JR1
is tangent to Γ at R1

.

R

S

R′

A

I

J

Ω

ω
R

S

R′

A

I

J

A′

Ω

ω

Solution 1 Solution 2

Solution 2. As in Solution 1, we noti
e that =JRS “ =JIS “ =AR1S, so we have RJ ‖ AR1
.

Let A1
be the re�e
tion of A about S; then ARA1R1

is a parallelogram with 
enter S, and

hen
e the point J lies on the line RA1
.

From =SR1A1 “ =SRA “ =SJR we get that the points S, J, A1, R1
are 
on
y
li
. This

proves that =SR1J “ =SA1J “ =SA1R “ =SAR1
, so JR1

is tangent to Γ at R1
.
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G3.

Let O be the 
ir
um
enter of an a
ute s
alene triangle ABC. Line OA interse
ts the

altitudes of ABC through B and C at P and Q, respe
tively. The altitudes meet at H . Prove

that the 
ir
um
enter of triangle PQH lies on a median of triangle ABC.

(Ukraine)

Solution. Suppose, without loss of generality, that AB ă AC. We have =PQH “ 900 ´
=QAB “ 900 ´ =OAB “ 1

2
=AOB “ =ACB, and similarly =QPH “ =ABC. Thus triangles

ABC and HPQ are similar. Let Ω and ω be the 
ir
um
ir
les of ABC and HPQ, respe
tively.

Sin
e =AHP “ 900 ´ =HAC “ =ACB “ =HQP , line AH is tangent to ω.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
C

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH T

MS

O

Ω

ω

Let T be the 
enter of ω and let lines AT and BC meet at M . We will take advantage

of the similarity between ABC and HPQ and the fa
t that AH is tangent to ω at H , with

A on line PQ. Consider the 
orresponding tangent AS to Ω, with S P BC. Then S and A


orrespond to ea
h other in △ABC „ △HPQ, and therefore =OSM “ =OAT “ =OAM .

Hen
e quadrilateral SAOM is 
y
li
, and sin
e the tangent line AS is perpendi
ular to AO,

=OMS “ 1800 ´ =OAS “ 900
. This means that M is the orthogonal proje
tion of O onto

BC, whi
h is its midpoint. So T lies on median AM of triangle ABC.



60 IMO 2017, Rio de Janeiro

G4.

In triangle ABC, let ω be the ex
ir
le opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respe
tively. The 
ir
le AEF interse
ts line BC

at P and Q. Let M be the midpoint of AD. Prove that the 
ir
le MPQ is tangent to ω.

(Denmark)

Solution 1. Denote by Ω the 
ir
le AEFPQ, and denote by γ the 
ir
le PQM . Let the line

AD meet ω again at T ‰ D. We will show that γ is tangent to ω at T .

We �rst prove that points P,Q,M, T are 
on
y
li
. Let A1
be the 
enter of ω. Sin
e

A1E K AE and A1F K AF , AA1
is a diameter in Ω. Let N be the midpoint of DT ; from

A1D “ A1T we 
an see that =A1NA “ 900
and therefore N also lies on the 
ir
le Ω. Now, from

the power of D with respe
t to the 
ir
les γ and Ω we get

DP ¨ DQ “ DA ¨ DN “ 2DM ¨ DT

2
“ DM ¨ DT,

so P,Q,M, T are 
on
y
li
.

If EF ‖ BC, then ABC is isos
eles and the problem is now immediate by symmetry.

Otherwise, let the tangent line to ω at T meet line BC at point R. The tangent line segments

RD and RT have the same length, so A1R is the perpendi
ular bise
tor ofDT ; sin
e ND “ NT ,

N lies on this perpendi
ular bise
tor.

In right triangle A1RD, RD2 “ RN ¨RA1 “ RP ¨RQ, in whi
h the last equality was obtained

from the power of R with respe
t to Ω. Hen
e RT 2 “ RP ¨ RQ, whi
h implies that RT is also

tangent to γ. Be
ause RT is a 
ommon tangent to ω and γ, these two 
ir
les are tangent at T .

Ω

A

P B D

M

Q

A′

N

T

F

C

ω

E

γ

R

Solution 2. After proving that P,Q,M, T are 
on
y
li
, we �nish the problem in a di�erent

fashion. We only 
onsider the 
ase in whi
h EF and BC are not parallel. Let lines PQ and

EF meet at point R. Sin
e PQ and EF are radi
al axes of Ω, γ and ω, γ, respe
tively, R is the

radi
al 
enter of these three 
ir
les.

With respe
t to the 
ir
le ω, the line DR is the polar of D, and the line EF is the polar

of A. So the pole of line ADT is DR X EF “ R, and therefore RT is tangent to ω.

Finally, sin
e T belongs to γ and ω and R is the radi
al 
enter of γ, ω and Ω, line RT is

the radi
al axis of γ and ω, and sin
e it is tangent to ω, it is also tangent to γ. Be
ause RT is

a 
ommon tangent to ω and γ, these two 
ir
les are tangent at T .

Comment. In Solution 2 we de�ned the point R from Solution 1 in a di�erent way.
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Solution 3. We give an alternative proof that the 
ir
les are tangent at the 
ommon point T .

Again, we start from the fa
t that P,Q,M, T are 
on
y
li
. Let point O be the midpoint of

diameter AA1
. Then MO is the midline of triangle ADA1

, so MO ‖ A1D. Sin
e A1D K PQ,

MO is perpendi
ular to PQ as well.

Looking at 
ir
le Ω, whi
h has 
enter O, MO K PQ implies that MO is the perpendi
ular

bise
tor of the 
hord PQ. Thus M is the midpoint of ar


ŊPQ from γ, and the tangent line m

to γ at M is parallel to PQ.

Ω

A

P B D

M

Q

A′

N

T

F

E

C

ω

m

γ

O

Consider the homothety with 
enter T and ratio

TD
TM

. It takes D to M , and the line PQ

to the line m. Sin
e the 
ir
le that is tangent to a line at a given point and that goes through

another given point is unique, this homothety also takes ω (tangent to PQ and going through T )

to γ (tangent to m and going through T ). We 
on
lude that ω and γ are tangent at T .
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G5.

Let ABCC1B1A1 be a 
onvex hexagon su
h that AB “ BC, and suppose that the line

segments AA1, BB1, and CC1 have the same perpendi
ular bise
tor. Let the diagonals AC1

and A1C meet at D, and denote by ω the 
ir
le ABC. Let ω interse
t the 
ir
le A1BC1 again

at E ‰ B. Prove that the lines BB1 and DE interse
t on ω.

(Ukraine)

Solution 1. If AA1 “ CC1, then the hexagon is symmetri
 about the line BB1; in par-

ti
ular the 
ir
les ABC and A1BC1 are tangent to ea
h other. So AA1 and CC1 must be

di�erent. Sin
e the points A and A1 
an be inter
hanged with C and C1, respe
tively, we may

assume AA1 ă CC1.

Let R be the radi
al 
enter of the 
ir
les AEBC and A1EBC1, and the 
ir
um
ir
le of the

symmetri
 trapezoid ACC1A1; that is the 
ommon point of the pairwise radi
al axes AC, A1C1,

and BE. By the symmetry of AC and A1C1, the point R lies on the 
ommon perpendi
ular

bise
tor of AA1 and CC1, whi
h is the external bise
tor of =ADC.

Let F be the se
ond interse
tion of the line DR and the 
ir
le ACD. From the power of

R with respe
t to the 
ir
les ω and ACFD we have RB ¨ RE “ RA ¨ RC “ RD ¨ DF , so the

points B,E,D and F are 
on
y
li
.

The line RDF is the external bise
tor of =ADC, so the point F bise
ts the ar


ŔCDA.

By AB “ BC, on 
ir
le ω, the point B is the midpoint of ar


ŐAEC; let M be the point

diametri
ally opposite to B, that is the midpoint of the opposite ar


ŊCA of ω. Noti
e that the

points B, F and M lie on the perpendi
ular bise
tor of AC, so they are 
ollinear.

R

B1

C1C

B

E

A

ω

A1

F

D

M

X

Finally, letX be the se
ond interse
tion point of ω and the lineDE. Sin
e BM is a diameter

in ω, we have =BXM “ 900
. Moreover,

=EXM “ 1800 ´ =MBE “ 1800 ´ =FBE “ =EDF,

so MX and FD are parallel. Sin
e BX is perpendi
ular to MX and BB1 is perpendi
ular

to FD, this shows that X lies on line BB1.
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Solution 2. De�ne point M as the point opposite to B on 
ir
le ω, and point R as the

interse
tion of lines AC, A1C1 and BE, and show that R lies on the external bise
tor of

=ADC , like in the �rst solution.

Sin
e B is the midpoint of the ar


ŐAEC, the line BER is the external bise
tor of =CEA.

Now we show that the internal angle bise
tors of =ADC and =CEA meet on the segment AC.

Let the angle bise
tor of =ADC meet AC at S, and let the angle bise
tor of =CEA, whi
h is

line EM , meet AC at S 1
. By applying the angle bise
tor theorem to both internal and external

bise
tors of =ADC and =CEA,

AS : CS “ AD : CD “ AR : CR “ AE : CE “ AS 1 : CS 1,

so indeed S “ S 1
.

By =RDS “ =SER “ 900
the points R, S, D and E are 
on
y
li
.

B1

C1

D

M

C

R

A1
A

E

B

X

ω

S = S ′

Now let the linesBB1 andDE meet at pointX . Noti
e that =EXB “ =EDS be
ause both

BB1 and DS are perpendi
ular to the line DR, we have that =EDS “ =ERS in 
ir
le SRDE,

and =ERS “ =EMB be
ause SR K BM and ER K ME. Therefore, =EXB “ =EMB, so

indeed, the point X lies on ω.
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G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verti
es of A that lie inside B or on its boundary are 
onse
utive.

(That is, prove that there exists a line separating those verti
es of A that lie inside B or on

its boundary from the other verti
es of A.)

(Cze
h Republi
)

Solution 1. In both solutions, by a polygon we always mean its interior together with its

boundary.

We start with �nding a regular n-gon C whi
h piq is ins
ribed into B (that is, all verti
es

of C lie on the perimeter of B); and piiq is either a translation of A, or a homotheti
 image of A
with a positive fa
tor.

Su
h a polygon may be 
onstru
ted as follows. Let OA and OB be the 
enters of A and B,
respe
tively, and let A be an arbitrary vertex of A. Let

ÝÝÝÑ
OBC be the ve
tor 
o-dire
tional

to

ÝÝÝÑ
OAA, with C lying on the perimeter of B. The rotations of C around OB by multiples

of 2π{n form the required polygon. Indeed, it is regular, ins
ribed into B (due to the rotational

symmetry of B), and �nally the translation/homothety mapping

ÝÝÝÑ
OAA to

ÝÝÝÑ
OBC maps A to C.

Now we separate two 
ases.

A

C

OA

OB

B

A

C

C1

C2

C3

A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

BT

BB

BL

BR
A

C

Constru
tion of C Case 1: Translation

Case 1: C is a translation of A by a ve
tor ~v.

Denote by t the translation transform by ve
tor ~v. We need to prove that the verti
es of C
whi
h stay in B under t are 
onse
utive. To visualize the argument, we refer the plane to Carte-

sian 
oordinates so that the x-axis is 
o-dire
tional with ~v. This way, the notions of right/left

and top/bottom are also introdu
ed, a

ording to the x- and y-
oordinates, respe
tively.

Let BT and BB be the top and the bottom verti
es of B (if several verti
es are extremal, we

take the rightmost of them). They split the perimeter of B into the right part BR and the left

part BL (the verti
es BT and BB are assumed to lie in both parts); ea
h part forms a 
onne
ted

subset of the perimeter of B. So the verti
es of C are also split into two parts CL Ă BL and

CR Ă BR, ea
h of whi
h 
onsists of 
onse
utive verti
es.

Now, all the points in BR (and hen
e in CR) move out from B under t, sin
e they are

the rightmost points of B on the 
orresponding horizontal lines. It remains to prove that the

verti
es of CL whi
h stay in B under t are 
onse
utive.

For this purpose, let C1, C2, and C3 be three verti
es in CL su
h that C2 is between C1

and C3, and tpC1q and tpC3q lie in B; we need to prove that tpC2q P B as well. Let Ai “ tpCiq.
The line through C2 parallel to ~v 
rosses the segment C1C3 to the right of C2; this means that

this line 
rosses A1A3 to the right of A2, so A2 lies inside the triangle A1C2A3 whi
h is 
ontained

in B. This yields the desired result.

Case 2: C is a homotheti
 image of A 
entered at X with fa
tor k ą 0.
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Denote by h the homothety mapping C to A. We need now to prove that the verti
es of C
whi
h stay in B after applying h are 
onse
utive. If X P B, the 
laim is easy. Indeed, if k ă 1,

then the verti
es of A lie on the segments of the form XC (C being a vertex of C) whi
h lie

in B. If k ą 1, then the verti
es of A lie on the extensions of su
h segments XC beyond C,

and almost all these extensions lie outside B. The ex
eptions may o

ur only in 
ase when X

lies on the boundary of B, and they may 
ause one or two verti
es of A stay on the boundary

of B. But even in this 
ase those verti
es are still 
onse
utive.

So, from now on we assume that X R B.

Now, there are two verti
es BT and BB of B su
h that B is 
ontained in the angle =BTXBB;

if there are several options, say, for BT, then we 
hoose the farthest one fromX if k ą 1, and the

nearest one if k ă 1. For the visualization purposes, we refer the plane to Cartesian 
oordinates

so that the y-axis is 
o-dire
tional with
ÝÝÝÝÑ
BBBT, and X lies to the left of the line BTBB. Again,

the perimeter of B is split by BT and BB into the right part BR and the left part BL, and the

set of verti
es of C is split into two subsets CR Ă BR and CL Ă BL.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

B

C

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1
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A3

X

BT

BB

BR

A

C

Case 2, X inside B Sub
ase 2.1: k ą 1

Sub
ase 2.1: k ą 1.

In this sub
ase, all points from BR (and hen
e from CR) move out from B under h, be
ause

they are the farthest points of B on the 
orresponding rays emanated from X . It remains to

prove that the verti
es of CL whi
h stay in B under h are 
onse
utive.

Again, let C1, C2, C3 be three verti
es in CL su
h that C2 is between C1 and C3, and hpC1q
and hpC3q lie in B. Let Ai “ hpCiq. Then the ray XC2 
rosses the segment C1C3 beyond C2,

so this ray 
rosses A1A3 beyond A2; this implies that A2 lies in the triangle A1C2A3, whi
h is


ontained in B.

C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3

C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1
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X

BT

BB

BRA

C

Sub
ase 2.2: k ă 1

Sub
ase 2.2: k ă 1.

This 
ase is 
ompletely similar to the previous one. All points from BL (and hen
e from CL
move out from B under h, be
ause they are the nearest points of B on the 
orresponding
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rays emanated from X . Assume that C1, C2, and C3 are three verti
es in CR su
h that C2

lies between C1 and C3, and hpC1q and hpC3q lie in B; let Ai “ hpCiq. Then A2 lies on

the segment XC2, and the segments XA2 and A1A3 
ross ea
h other. Thus A2 lies in the

triangle A1C2A3, whi
h is 
ontained in B.

Comment 1. In fa
t, Case 1 
an be redu
ed to Case 2 via the following argument.

Assume that A and C are 
ongruent. Apply to A a homothety 
entered at OB with a fa
tor slightly

smaller than 1 to obtain a polygon A1
. With appropriately 
hosen fa
tor, the verti
es of A whi
h were

outside/inside B stay outside/inside it, so it su�
es to prove our 
laim for A1
instead of A. And now,

the polygon A1
is a homotheti
 image of C, so the arguments from Case 2 apply.

Comment 2. After the polygon C has been found, the rest of the solution uses only the 
onvexity of

the polygons, instead of regularity. Thus, it proves a more general statement:

Assume that A, B, and C are three 
onvex polygons in the plane su
h that C is ins
ribed into B,
and A 
an be obtained from it via either translation or positive homothety. Then the verti
es of A that

lie inside B or on its boundary are 
onse
utive.

Solution 2. Let OA and OB be the 
enters ofA and B, respe
tively. Denote rns “ t1, 2, . . . , nu.
We start with introdu
ing appropriate enumerations and notations. Enumerate the sidelines

of B 
lo
kwise as ℓ1, ℓ2, . . . , ℓn. Denote by Hi the half-plane of ℓi that 
ontains B (Hi is assumed

to 
ontain ℓi); by Bi the midpoint of the side belonging to ℓi; and �nally denote

ÝÑ
bi “ ÝÝÝÑ

BiOB.

(As usual, the numbering is 
y
li
 modulo n, so ℓn`i “ ℓi et
.)

Now, 
hoose a vertex A1 of A su
h that the ve
tor

ÝÝÝÑ
OAA1 points �mostly outside H1�;

stri
tly speaking, this means that the s
alar produ
t xÝÝÝÑ
OAA1,

ÝÑ
b1y is minimal. Starting from A1,

enumerate the verti
es of A 
lo
kwise as A1, A2, . . . , An; by the rotational symmetry, the 
hoi
e

of A1 yields that the ve
tor

ÝÝÝÑ
OAAi points �mostly outside Hi�, i.e.,

xÝÝÝÑ
OAAi,

ÝÑ
bi y “ min

jPrns
xÝÝÝÑ
OAAj,

ÝÑ
bi y. (1)

An

A1 A2

A3Bn

B1 B2

B3

ℓ1

ℓ2

ℓ3

−→
bn

−→
b1

−→
b2

−→
b3H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1

OA

OB
B A

Enumerations and notations

We intend to reformulate the problem in more 
ombinatorial terms, for whi
h purpose we

introdu
e the following notion. Say that a subset I Ď rns is 
onne
ted if the elements of this

set are 
onse
utive in the 
y
li
 order (in other words, if we join ea
h i with i`1 mod n by an

edge, this subset is 
onne
ted in the usual graph sense). Clearly, the union of two 
onne
ted

subsets sharing at least one element is 
onne
ted too. Next, for any half-plane H the indi
es

of verti
es of, say, A that lie in H form a 
onne
ted set.

To a

ess the problem, we denote

M “ tj P rns : Aj R Bu, Mi “ tj P rns : Aj R Hiu for i P rns.
We need to prove that rns z M is 
onne
ted, whi
h is equivalent to M being 
onne
ted. On

the other hand, sin
e B “ Ş
iPrns Hi, we have M “ Ť

iPrns Mi, where the sets Mi are easier to

investigate. We will utilize the following properties of these sets; the �rst one holds by the

de�nition of Mi, along with the above remark.
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AnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAnAn
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M1 = {n, 1, 2}

M2 = {1, 2, 3}

M3 = {3, 4}
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The sets Mi

Property 1: Ea
h set Mi is 
onne
ted. l

Property 2: If Mi is nonempty, then i P Mi.

Proof. Indeed, we have

j P Mi ðñ Aj R Hi ðñ xÝÝÝÑ
BiAj ,

ÝÑ
bi y ă 0 ðñ xÝÝÝÑ

OAAj ,
ÝÑ
bi y ă xÝÝÝÑ

OABi,
ÝÑ
bi y. (2)

The right-hand part of the last inequality does not depend on j. Therefore, if some j lies in Mi,

then by (1) so does i. l

In view of Property 2, it is useful to de�ne the set

M 1 “ ti P rns : i P Miu “ ti P rns : Mi ‰ ∅u.

Property 3: The set M 1
is 
onne
ted.

Proof. To prove this property, we pro
eed on with the investigation started in (2) to write

i P M 1 ðñ Ai P Mi ðñ xÝÝÝÑ
BiAi,

ÝÑ
bi y ă 0 ðñ xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă xÝÝÝÑ

OBBi,
ÝÑ
bi y ` xÝÝÝÑ

AiOA,
ÝÑ
bi y.

The right-hand part of the obtained inequality does not depend on i, due to the rotational

symmetry; denote its 
onstant value by µ. Thus, i P M 1
if and only if xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă µ. This


ondition is in turn equivalent to the fa
t that Bi lies in a 
ertain (open) half-plane whose

boundary line is orthogonal to OBOA; thus, it de�nes a 
onne
ted set. l

Now we 
an �nish the solution. Sin
e M 1 Ď M , we have

M “
ď

iPrns

Mi “ M 1 Y
ď

iPrns

Mi,

so M 
an be obtained from M 1
by adding all the sets Mi one by one. All these sets are


onne
ted, and ea
h nonempty Mi 
ontains an element of M 1
(namely, i). Thus their union is

also 
onne
ted.

Comment 3. Here we present a way in whi
h one 
an 
ome up with a solution like the one above.

Assume, for sake of simpli
ity, that OA lies inside B. Let us �rst put onto the plane a very small

regular n-gon A1

entered at OA and aligned with A; all its verti
es lie inside B. Now we start blowing

it up, looking at the order in whi
h the verti
es leave B. To go out of B, a vertex should 
ross a 
ertain

side of B (whi
h is hard to des
ribe), or, equivalently, to 
ross at least one sideline of B � and this

event is easier to des
ribe. Indeed, the �rst vertex of A1
to 
ross ℓi is the vertex A1

i (
orresponding to Ai

in A); more generally, the verti
es A1
j 
ross ℓi in su
h an order that the s
alar produ
t xÝÝÝÑ

OAAj ,
ÝÑ
bi y does

not in
rease. For di�erent indi
es i, these orders are just 
y
li
 shifts of ea
h other; and this provides

some intuition for the notions and 
laims from Solution 2.
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G7.

A 
onvex quadrilateral ABCD has an ins
ribed 
ir
le with 
enter I. Let Ia, Ib, Ic,

and Id be the in
enters of the triangles DAB, ABC, BCD, and CDA, respe
tively. Suppose

that the 
ommon external tangents of the 
ir
les AIbId and CIbId meet at X , and the 
ommon

external tangents of the 
ir
les BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

Solution. Denote by ωa, ωb, ωc and ωd the 
ir
les AIbId, BIaIc, CIbId, and DIaIc, let their


enters be Oa, Ob, Oc and Od, and let their radii be ra, rb, rc and rd, respe
tively.

Claim 1. IbId K AC and IaIc K BD.

Proof. Let the in
ir
les of triangles ABC and ACD be tangent to the line AC at T and T 1
,

respe
tively. (See the �gure to the left.) We have AT “ AB`AC´BC
2

in triangle ABC, AT 1 “
AD`AC´CD

2
in triangle ACD, and AB ´ BC “ AD ´ CD in quadrilateral ABCD, so

AT “ AC ` AB ´ BC

2
“ AC ` AD ´ CD

2
“ AT 1.

This shows T “ T 1
. As an immediate 
onsequen
e, IbId K AC.

The se
ond statement 
an be shown analogously. l

TA C

B

Ib

T ′

Id

D D

I

Id

A C

Ib

B

ωa

T
Oa

Claim 2. The points Oa, Ob, Oc and Od lie on the lines AI, BI, CI and DI, respe
tively.

Proof. By symmetry it su�
es to prove the 
laim for Oa. (See the �gure to the right above.)

Noti
e �rst that the in
ir
les of triangles ABC and ACD 
an be obtained from the in
ir
le of

the quadrilateral ABCD with homothety 
enters B and D, respe
tively, and homothety fa
tors

less than 1, therefore the points Ib and Id lie on the line segments BI and DI, respe
tively.

As is well-known, in every triangle the altitude and the diameter of the 
ir
um
ir
le starting

from the same vertex are symmetri
 about the angle bise
tor. By Claim 1, in triangle AIdIb,

the segment AT is the altitude starting from A. Sin
e the foot T lies inside the segment

IbId, the 
ir
um
enter Oa of triangle AIdIb lies in the angle domain IbAId in su
h a way that

=IbAT “ =OaAId. The points Ib and Id are the in
enters of triangles ABC and ACD, so the

lines AIb and AId bise
t the angles =BAC and =CAD, respe
tively. Then

=OaAD “ =OaAId ` =IdAD “ =IbAT ` =IdAD “ 1

2
=BAC ` 1

2
=CAD “ 1

2
=BAD,

so Oa lies on the angle bise
tor of =BAD, that is, on line AI. l

The point X is the external similitude 
enter of ωa and ωc; let U be their internal similitude


enter. The points Oa and Oc lie on the perpendi
ular bise
tor of the 
ommon 
hord IbId of ωa

and ωc, and the two similitude 
enters X and U lie on the same line; by Claim 2, that line is

parallel to AC.
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Y

X

Ib

D

C

B

A

Id

U Oc
Oa

I

ωc

ωa

W

From the similarity of the 
ir
les ωa and ωc, from OaIb “ OaId “ OaA “ ra and OcIb “
OcId “ OcC “ rc, and from AC ‖ OaOc we 
an see that

OaX

OcX
“ OaU

OcU
“ ra

rc
“ OaIb

OcIb
“ OaId

OcId
“ OaA

OcC
“ OaI

OcI
.

So the points X,U, Ib, Id, I lie on the Apollonius 
ir
le of the points Oa, Oc with ratio ra : rc. In

this Apollonius 
ir
le XU is a diameter, and the lines IU and IX are respe
tively the internal

and external bise
tors of =OaIOc “ =AIC, a

ording to the angle bise
tor theorem. Moreover,

in the Apollonius 
ir
le the diameter UX is the perpendi
ular bise
tor of IbId, so the lines IX

and IU are the internal and external bise
tors of =IbIId “ =BID, respe
tively.

Repeating the same argument for the points B,D instead of A,C, we get that the line IY is

the internal bise
tor of =AIC and the external bise
tor of =BID. Therefore, the lines IX and

IY respe
tively are the internal and external bise
tors of =BID, so they are perpendi
ular.

Comment. In fa
t the points Oa, Ob, Oc and Od lie on the line segments AI, BI, CI and DI,

respe
tively. For the point Oa this 
an be shown for example by =IdOaA ` =AOaIb “ p1800 ´
2=OaAIdq`p1800 ´2=IbAOaq “ 360˝ ´=BAD “ =ADI`=DIA`=AIB`=IBA ą =IdIA`=AIIb.

The solution also shows that the line IY passes through the point U , and analogously, IX passes

through the internal similitude 
enter of ωb and ωd.

http://mathworld.wolfram.com/ApolloniusCircle.html
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G8.

There are 2017 mutually external 
ir
les drawn on a bla
kboard, su
h that no two are

tangent and no three share a 
ommon tangent. A tangent segment is a line segment that is

a 
ommon tangent to two 
ir
les, starting at one tangent point and ending at the other one.

Lu
iano is drawing tangent segments on the bla
kboard, one at a time, so that no tangent

segment interse
ts any other 
ir
les or previously drawn tangent segments. Lu
iano keeps

drawing tangent segments until no more 
an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)

Answer: If there were n 
ir
les, there would always be exa
tly 3pn ´ 1q segments; so the only

possible answer is 3 ¨ 2017 ´ 3 “ 6048.

Solution 1. First, 
onsider a parti
ular arrangement of 
ir
les C1, C2, . . . , Cn where all the


enters are aligned and ea
h Ci is e
lipsed from the other 
ir
les by its neighbors � for example,

taking Ci with 
enter pi2, 0q and radius i{2 works. Then the only tangent segments that 
an

be drawn are between adja
ent 
ir
les Ci and Ci`1, and exa
tly three segments 
an be drawn

for ea
h pair. So Lu
iano will draw exa
tly 3pn ´ 1q segments in this 
ase.

C3
C4 C5

C2C1

For the general 
ase, start from a �nal 
on�guration (that is, an arrangement of 
ir
les

and segments in whi
h no further segments 
an be drawn). The idea of the solution is to


ontinuously resize and move the 
ir
les around the plane, one by one (in parti
ular, making

sure we never have 4 
ir
les with a 
ommon tangent line), and show that the number of segments

drawn remains 
onstant as the pi
ture 
hanges. This way, we 
an redu
e any 
ir
le/segment


on�guration to the parti
ular one mentioned above, and the �nal number of segments must

remain at 3n ´ 3.

Some preliminary 
onsiderations: look at all possible tangent segments joining any two


ir
les. A segment that is tangent to a 
ir
le A 
an do so in two possible orientations � it

may 
ome out of A in 
lo
kwise or 
ounter
lo
kwise orientation. Two segments tou
hing the

same 
ir
le with the same orientation will never interse
t ea
h other. Ea
h pair pA,Bq of 
ir
les
has 4 
hoi
es of tangent segments, whi
h 
an be identi�ed by their orientations � for example,

pA`, B´q would be the segment whi
h 
omes out of A in 
lo
kwise orientation and 
omes out of

B in 
ounter
lo
kwise orientation. In total, we have 2npn ´ 1q possible segments, disregarding

interse
tions.

Now we pi
k a 
ir
le C and start to 
ontinuously move and resize it, maintaining all existing

tangent segments a

ording to their identi�
ations, in
luding those involving C. We 
an keep

our 
hoi
e of tangent segments until the 
on�guration rea
hes a transition. We lose nothing if

we assume that C is kept at least ε units away from any other 
ir
le, where ε is a positive, �xed


onstant; therefore at a transition either: (1) a 
urrently drawn tangent segment t suddenly

be
omes obstru
ted; or (2) a 
urrently absent tangent segment t suddenly be
omes unobstru
ted

and available.

Claim. A transition 
an only o

ur when three 
ir
les C1, C2, C3 are tangent to a 
ommon line ℓ


ontaining t, in a way su
h that the three tangent segments lying on ℓ (joining the three 
ir
les

pairwise) are not obstru
ted by any other 
ir
les or tangent segments (other than C1, C2, C3).

Proof. Sin
e (2) is e�e
tively the reverse of (1), it su�
es to prove the 
laim for (1). Suppose t

has suddenly be
ome obstru
ted, and let us 
onsider two 
ases.
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Case 1: t be
omes obstru
ted by a 
ir
le

t

Ø

t

Ø

t

Then the new 
ir
le be
omes the third 
ir
le tangent to ℓ, and no other 
ir
les or tangent

segments are obstru
ting t.

Case 2: t be
omes obstru
ted by another tangent segment t1

When two segments t and t1
�rst interse
t ea
h other, they must do so at a vertex of one of

them. But if a vertex of t1
�rst 
rossed an interior point of t, the 
ir
le asso
iated to this vertex

was already blo
king t (absurd), or is about to (we already took 
are of this in 
ase 1). So we

only have to analyze the possibility of t and t1
suddenly having a 
ommon vertex. However,

if that happens, this vertex must belong to a single 
ir
le (remember we are keeping di�erent


ir
les at least ε units apart from ea
h other throughout the moving/resizing pro
ess), and

therefore they must have di�erent orientations with respe
t to that 
ir
le.

t

t′

Ø
t

t′

Ø

t

t′

Thus, at the transition moment, both t and t1
are tangent to the same 
ir
le at a 
ommon

point, that is, they must be on the same line ℓ and hen
e we again have three 
ir
les simultane-

ously tangent to ℓ. Also no other 
ir
les or tangent segments are obstru
ting t or t1
(otherwise,

they would have disappeared before this transition). l

Next, we fo
us on the maximality of a 
on�guration immediately before and after a tran-

sition, where three 
ir
les share a 
ommon tangent line ℓ. Let the three 
ir
les be C1, C2, C3,

ordered by their tangent points. The only possibly a�e
ted segments are the ones lying on

ℓ, namely t12, t23 and t13. Sin
e C2 is in the middle, t12 and t23 must have di�erent orienta-

tions with respe
t to C2. For C1, t12 and t13 must have the same orientation, while for C3, t13
and t23 must have the same orientation. The �gure below summarizes the situation, showing

alternative positions for C1 (namely, C1 and C 1
1
) and for C3 (C3 and C 1

3
).

C3

C ′
3

t12 t23

C1

C ′
1

C2
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Now perturb the diagram slightly so the three 
ir
les no longer have a 
ommon tangent,

while preserving the de�nition of t12, t23 and t13 a

ording to their identi�
ations. First note

that no other 
ir
les or tangent segments 
an obstru
t any of these segments. Also re
all that

tangent segments joining the same 
ir
le at the same orientation will never obstru
t ea
h other.

The availability of the tangent segments 
an now be 
he
ked using simple diagrams.

Case 1: t13 passes through C2

C2

C3

C ′
3

t13

t23t12

C1

C ′
1

In this 
ase, t13 is not available, but both t12 and t23 are.

Case 2: t13 does not pass through C2

C ′
1

t12
t23

t13

C1

C ′
3

C2

C3

Now t13 is available, but t12 and t23 obstru
t ea
h other, so only one 
an be drawn.

In any 
ase, exa
tly 2 out of these 3 segments 
an be drawn. Thus the maximal number of

segments remains 
onstant as we move or resize the 
ir
les, and we are done.

Solution 2. First note that all tangent segments lying on the boundary of the 
onvex hull of

the 
ir
les are always drawn sin
e they do not interse
t anything else. Now in the �nal pi
ture,

aside from the n 
ir
les, the bla
kboard is divided into regions. We 
an 
onsider the pi
ture

as a plane (multi-)graph G in whi
h the 
ir
les are the verti
es and the tangent segments are

the edges. The idea of this solution is to �nd a relation between the number of edges and the

number of regions in G; then, on
e we prove that G is 
onne
ted, we 
an use Euler's formula

to �nish the problem.

The boundary of ea
h region 
onsists of 1 or more (for now) simple 
losed 
urves, ea
h

made of ar
s and tangent segments. The segment and the ar
 might meet smoothly (as in Si,

i “ 1, 2, . . . , 6 in the �gure below) or not (as in P1, P2, P3, P4; 
all su
h points sharp 
orners of

the boundary). In other words, if a person walks along the border, her dire
tion would suddenly

turn an angle of π at a sharp 
orner.
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S4

S6

P1

P4

S5

P3

S1

P2

S3

S2

Claim 1. The outer boundary B1 of any internal region has at least 3 sharp 
orners.

Proof. Let a person walk one lap along B1 in the 
ounter
lo
kwise orientation. As she does

so, she will turn 
lo
kwise as she moves along the 
ir
le ar
s, and not turn at all when moving

along the lines. On the other hand, her total rotation after one lap is 2π in the 
ounter
lo
kwise

dire
tion! Where 
ould she be turning 
ounter
lo
kwise? She 
an only do so at sharp 
orners,

and, even then, she turns only an angle of π there. But two sharp 
orners are not enough, sin
e

at least one ar
 must be present�so she must have gone through at least 3 sharp 
orners. l

Claim 2. Ea
h internal region is simply 
onne
ted, that is, has only one boundary 
urve.

Proof. Suppose, by 
ontradi
tion, that some region has an outer boundary B1 and inner boun-

daries B2, B3, . . . , Bm (m ě 2). Let P1 be one of the sharp 
orners of B1.

Now 
onsider a 
ar starting at P1 and traveling 
ounter
lo
kwise along B1. It starts in

reverse, i.e., it is initially fa
ing the 
orner P1. Due to the tangent 
onditions, the 
ar may travel

in a way so that its orientation only 
hanges when it is moving along an ar
. In parti
ular, this

means the 
ar will sometimes travel forward. For example, if the 
ar approa
hes a sharp 
orner

when driving in reverse, it would 
ontinue travel forward after the 
orner, instead of making an

immediate half-turn. This way, the orientation of the 
ar only 
hanges in a 
lo
kwise dire
tion

sin
e the 
ar always travels 
lo
kwise around ea
h ar
.

Now imagine there is a laser pointer at the front of the 
ar, pointing dire
tly ahead. Initially,

the laser endpoint hits P1, but, as soon as the 
ar hits an ar
, the endpoint moves 
lo
kwise

around B1. In fa
t, the laser endpoint must move 
ontinuously along B1! Indeed, if the

endpoint ever jumped (within B1, or from B1 to one of the inner boundaries), at the moment

of the jump the interrupted laser would be a drawable tangent segment that Lu
iano missed

(see �gure below for an example).

P1

P3

P2

Car

Laser



74 IMO 2017, Rio de Janeiro

Now, let P2 and P3 be the next two sharp 
orners the 
ar goes through, after P1 (the

previous lemma assures their existen
e). At P2 the 
ar starts moving forward, and at P3 it will

start to move in reverse again. So, at P3, the laser endpoint is at P3 itself. So while the 
ar

moved 
ounter
lo
kwise between P1 and P3, the laser endpoint moved 
lo
kwise between P1

and P3. That means the laser beam itself s
anned the whole region within B1, and it should

have 
rossed some of the inner boundaries. l

Claim 3. Ea
h region has exa
tly 3 sharp 
orners.

Proof. Consider again the 
ar of the previous 
laim, with its laser still �rmly atta
hed to its

front, traveling the same way as before and going through the same 
onse
utive sharp 
orners

P1, P2 and P3. As we have seen, as the 
ar goes 
ounter
lo
kwise from P1 to P3, the laser

endpoint goes 
lo
kwise from P1 to P3, so together they 
over the whole boundary. If there

were a fourth sharp 
orner P4, at some moment the laser endpoint would pass through it. But,

sin
e P4 is a sharp 
orner, this means the 
ar must be on the extension of a tangent segment

going through P4. Sin
e the 
ar is not on that segment itself (the 
ar never goes through P4),

we would have 3 
ir
les with a 
ommon tangent line, whi
h is not allowed.

P4

P1

P2

P3

Laser Car

l

We are now ready to �nish the solution. Let r be the number of internal regions, and s be the

number of tangent segments. Sin
e ea
h tangent segment 
ontributes exa
tly 2 sharp 
orners

to the diagram, and ea
h region has exa
tly 3 sharp 
orners, we must have 2s “ 3r. Sin
e the

graph 
orresponding to the diagram is 
onne
ted, we 
an use Euler's formula n´ s` r “ 1 and

�nd s “ 3n ´ 3 and r “ 2n ´ 2.
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Number Theory

N1.

The sequen
e a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whi
h there is at least one number a su
h that an “ a for

in�nitely many values of n.

(South Afri
a)

Answer: All positive multiples of 3.

Solution. Sin
e the value of an`1 only depends on the value of an, if an “ am for two di�erent

indi
es n and m, then the sequen
e is eventually periodi
. So we look for the values of a0 for

whi
h the sequen
e is eventually periodi
.

Claim 1. If an ” ´1 pmod 3q, then, for all m ą n, am is not a perfe
t square. It follows that

the sequen
e is eventually stri
tly in
reasing, so it is not eventually periodi
.

Proof. A square 
annot be 
ongruent to ´1 modulo 3, so an ” ´1 pmod 3q implies that an is

not a square, therefore an`1 “ an ` 3 ą an. As a 
onsequen
e, an`1 ” an ” ´1 pmod 3q, so
an`1 is not a square either. By repeating the argument, we prove that, from an on, all terms of

the sequen
e are not perfe
t squares and are greater than their prede
essors, whi
h 
ompletes

the proof. l

Claim 2. If an ı ´1 pmod 3q and an ą 9 then there is an index m ą n su
h that am ă an.

Proof. Let t2 be the largest perfe
t square whi
h is less than an. Sin
e an ą 9, t is at least

3. The �rst square in the sequen
e an, an ` 3, an ` 6, . . . will be pt ` 1q2, pt ` 2q2 or pt ` 3q2,
therefore there is an index m ą n su
h that am ď t ` 3 ă t2 ă an, as 
laimed. l

Claim 3. If an ” 0 pmod 3q, then there is an index m ą n su
h that am “ 3.

Proof. First we noti
e that, by the de�nition of the sequen
e, a multiple of 3 is always followed

by another multiple of 3. If an P t3, 6, 9u the sequen
e will eventually follow the periodi
 pattern

3, 6, 9, 3, 6, 9, . . . . If an ą 9, let j be an index su
h that aj is equal to the minimum value of

the set tan`1, an`2, . . . u. We must have aj ď 9, otherwise we 
ould apply Claim 2 to aj and

get a 
ontradi
tion on the minimality hypothesis. It follows that aj P t3, 6, 9u, and the proof is


omplete. l

Claim 4. If an ” 1 pmod 3q, then there is an index m ą n su
h that am ” ´1 pmod 3q.
Proof. In the sequen
e, 4 is always followed by 2 ” ´1 pmod 3q, so the 
laim is true for an “ 4.

If an “ 7, the next terms will be 10, 13, 16, 4, 2, . . . and the 
laim is also true. For an ě 10, we

again take an index j ą n su
h that aj is equal to the minimum value of the set tan`1, an`2, . . . u,
whi
h by the de�nition of the sequen
e 
onsists of non-multiples of 3. Suppose aj ” 1 pmod 3q.
Then we must have aj ď 9 by Claim 2 and the minimality of aj . It follows that aj P t4, 7u,
so am “ 2 ă aj for some m ą j, 
ontradi
ting the minimality of aj . Therefore, we must have

aj ” ´1 pmod 3q. l

It follows from the previous 
laims that if a0 is a multiple of 3 the sequen
e will eventually

rea
h the periodi
 pattern 3, 6, 9, 3, 6, 9, . . . ; if a0 ” ´1 pmod 3q the sequen
e will be stri
tly

in
reasing; and if a0 ” 1 pmod 3q the sequen
e will be eventually stri
tly in
reasing.

So the sequen
e will be eventually periodi
 if, and only if, a0 is a multiple of 3.
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N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in ea
h move, the 
urrent player 
hooses an index i in the set t0, 1, . . . , p´1u
that was not 
hosen before by either of the two players and then 
hooses an element ai of the

set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indi
es

i P t0, 1, . . . , p ´ 1u have been 
hosen. Then the following number is 
omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moro

o)

Solution. We say that a player makes the move pi, aiq if he 
hooses the index i and then the

element ai of the set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u in this move.

If p “ 2 or p “ 5 then Eduardo 
hooses i “ 0 and a0 “ 0 in the �rst move, and wins, sin
e,

independently of the next moves, M will be a multiple of 10.

Now assume that the prime number p does not belong to t2, 5u. Eduardo 
hooses i “ p´ 1

and ap´1 “ 0 in the �rst move. By Fermat's Little Theorem, p10pp´1q{2q2 “ 10p´1 ” 1 pmod pq,
so p | p10pp´1q{2q2 ´ 1 “ p10pp´1q{2 ` 1qp10pp´1q{2 ´ 1q. Sin
e p is prime, either p | 10pp´1q{2 ` 1 or

p | 10pp´1q{2 ´ 1. Thus we have two 
ases:

Case a: 10pp´1q{2 ” ´1 pmod pq
In this 
ase, for ea
h move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi` p´1

2
, aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi´ p´1

2
, aiq, if p´1

2
ď i ď p´2. We will have 10j ” ´10i

pmod pq, and so aj ¨ 10j “ ai ¨ 10j ” ´ai ¨ 10i pmod pq. Noti
e that this move by Eduardo

is always possible. Indeed, immediately before a move by Fernando, for any set of the type

tr, r ` pp ´ 1q{2u with 0 ď r ď pp ´ 3q{2, either no element of this set was 
hosen as an index

by the players in the previous moves or else both elements of this set were 
hosen as indi
es by

the players in the previous moves. Therefore, after ea
h of his moves, Eduardo always makes

the sum of the numbers ak ¨ 10k 
orresponding to the already 
hosen pairs pk, akq divisible by

p, and thus wins the game.

Case b: 10pp´1q{2 ” 1 pmod pq
In this 
ase, for ea
h move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi ` p´1

2
, 9 ´ aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi ´ p´1

2
, 9 ´ aiq, if p´1

2
ď i ď p ´ 2. The same

argument as above shows that Eduardo 
an always make su
h move. We will have 10j ” 10i

pmod pq, and so aj ¨ 10j ` ai ¨ 10i ” pai ` ajq ¨ 10i “ 9 ¨ 10i pmod pq. Therefore, at the end of

the game, the sum of all terms ak ¨ 10k will be 
ongruent to
p´3

2ÿ

i“0

9 ¨ 10i “ 10pp´1q{2 ´ 1 ” 0 pmod pq,

and Eduardo wins the game.



Shortlisted problems � solutions 77

N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n su
h that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)

(Thailand)

Answer: These integers are exa
tly the prime numbers.

Solution. Let us �rst show that, if n “ ab, with a, b ě 2 integers, then the property in the

statement of the problem does not hold. Indeed, in this 
ase, let ak “ a for 1 ď k ď n ´ 1 and

an “ 0. The sum a1 ` a2 ` ¨ ¨ ¨ ` an “ a ¨ pn ´ 1q is not divisible by n. Let i with 1 ď i ď n be

an arbitrary index. Taking j “ b if 1 ď i ď n ´ b, and j “ b ` 1 if n ´ b ă i ď n, we have

ai ` ai`1 ` ¨ ¨ ¨ ` ai`j´1 “ a ¨ b “ n ” 0 pmod nq.

It follows that the given example is indeed a 
ounterexample to the property of the statement.

Now let n be a prime number. Suppose by 
ontradi
tion that the property in the statement

of the problem does not hold. Then there are integers a1, a2, . . . , an whose sum is not divisible

by n su
h that for ea
h i, 1 ď i ď n, there is j, 1 ď j ď n, for whi
h the number ai ` ai`1 `
¨ ¨ ¨ ` ai`j´1 is divisible by n. Noti
e that, in any su
h 
ase, we should have 1 ď j ď n ´ 1,

sin
e a1 ` a2 ` ¨ ¨ ¨ ` an is not divisible by n. So we may 
onstru
t re
ursively a �nite sequen
e

of integers 0 “ i0 ă i1 ă i2 ă ¨ ¨ ¨ ă in with is`1 ´ is ď n ´ 1 for 0 ď s ď n ´ 1 su
h that, for

0 ď s ď n ´ 1,

ais`1 ` ais`2 ` ¨ ¨ ¨ ` ais`1
” 0 pmod nq

(where we take indi
es modulo n). Indeed, for 0 ď s ă n, we apply the previous observation

to i “ is ` 1 in order to de�ne is`1 “ is ` j.

In the sequen
e of n ` 1 indi
es i0, i1, i2, . . . , in, by the pigeonhole prin
iple, we have two

distin
t elements whi
h are 
ongruent modulo n. So there are indi
es r, s with 0 ď r ă s ď n

su
h that is ” ir pmod nq and

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “
s´1ÿ

j“r

paij`1 ` aij`2 ` ¨ ¨ ¨ ` aij`1
q ” 0 pmod nq.

Sin
e is ” ir pmod nq, we have is ´ ir “ k ¨ n for some positive integer k, and, sin
e ij`1 ´ ij ď
n ´ 1 for 0 ď j ď n ´ 1, we have is ´ ir ď pn ´ 1q ¨ n, so k ď n ´ 1. But in this 
ase

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “ k ¨ pa1 ` a2 ` ¨ ¨ ¨ ` anq


annot be a multiple of n, sin
e n is prime and neither k nor a1 ` a2 ` ¨ ¨ ¨ ` an is a multiple

of n. A 
ontradi
tion.
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N4.

Call a rational number short if it has �nitely many digits in its de
imal expansion.

For a positive integer m, we say that a positive integer t is m-tasti
 if there exists a number

c P t1, 2, 3, . . . , 2017u su
h that

10t ´ 1

c ¨ m is short, and su
h that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti
 numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

Answer: 807.

Solution. First noti
e that x P Q is short if and only if there are exponents a, b ě 0 su
h that

2a ¨ 5b ¨ x P Z. In fa
t, if x is short, then x “ n
10k

for some k and we 
an take a “ b “ k; on the

other hand, if 2a ¨ 5b ¨ x “ q P Z then x “ 2b¨5aq
10a`b , so x is short.

If m “ 2a ¨ 5b ¨ s, with gcdps, 10q “ 1, then 10t´1

m
is short if and only if s divides 10t ´ 1. So

we may (and will) suppose without loss of generality that gcdpm, 10q “ 1. De�ne

C “ t1 ď c ď 2017: gcdpc, 10q “ 1u.

The m-tasti
 numbers are then pre
isely the smallest exponents t ą 0 su
h that 10t ” 1

pmod cmq for some integer c P C, that is, the set of orders of 10 modulo cm. In other words,

Spmq “ tordcmp10q : c P Cu.

Sin
e there are 4 ¨ 201 ` 3 “ 807 numbers c with 1 ď c ď 2017 and gcdpc, 10q “ 1, namely

those su
h that c ” 1, 3, 7, 9 pmod 10q,

|Spmq| ď |C| “ 807.

Now we �nd m su
h that |Spmq| “ 807. Let

P “ t1 ă p ď 2017: p is prime, p ‰ 2, 5u

and 
hoose a positive integer α su
h that every p P P divides 10α ´ 1 (e.g. α “ ϕpT q, T being

the produ
t of all primes in P ), and let m “ 10α ´ 1.

Claim. For every c P C, we have

ordcmp10q “ cα.

As an immediate 
onsequen
e, this implies |Spmq| “ |C| “ 807, �nishing the problem.

Proof. Obviously ordmp10q “ α. Let t “ ordcmp10q. Then

cm � 10t ´ 1 ùñ m � 10t ´ 1 ùñ α � t.

Hen
e t “ kα for some k P Zą0. We will show that k “ c.

Denote by νppnq the number of prime fa
tors p in n, that is, the maximum exponent β for

whi
h pβ � n. For every ℓ ě 1 and p P P , the Lifting the Exponent Lemma provides

νpp10ℓα ´ 1q “ νppp10αqℓ ´ 1q “ νpp10α ´ 1q ` νppℓq “ νppmq ` νppℓq,

so

cm � 10kα ´ 1 ðñ @p P P ; νppcmq ď νpp10kα ´ 1q
ðñ @p P P ; νppmq ` νppcq ď νppmq ` νppkq
ðñ @p P P ; νppcq ď νppkq
ðñ c � k.

The �rst su
h k is k “ c, so ordcmp10q “ cα. l
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Comment. The Lifting the Exponent Lemma states that, for any odd prime p, any integers a, b


oprime with p su
h that p � a ´ b, and any positive integer exponent n,

νppan ´ bnq “ νppa ´ bq ` νppnq,

and, for p “ 2,
ν2pan ´ bnq “ ν2pa2 ´ b2q ` νppnq ´ 1.

Both 
laims 
an be proved by indu
tion on n.
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N5.

Find all pairs pp, qq of prime numbers with p ą q for whi
h the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)

Answer: The only su
h pair is p3, 2q.
Solution. Let M “ pp ` qqp´qpp ´ qqp`q ´ 1, whi
h is relatively prime with both p ` q and

p ´ q. Denote by pp ´ qq´1
the multipli
ative inverse of pp ´ qq modulo M .

By eliminating the term ´1 in the numerator,

pp ` qqp`qpp ´ qqp´q ´ 1 ” pp ` qqp´qpp ´ qqp`q ´ 1 pmod Mq
pp ` qq2q ” pp ´ qq2q pmod Mq (1)

´
pp ` qq ¨ pp ´ qq´1

¯2q

” 1 pmod Mq. (2)

Case 1: q ě 5.

Consider an arbitrary prime divisor r of M . Noti
e that M is odd, so r ě 3. By p2q, the
multipli
ative order of

´
pp ` qq ¨ pp ´ qq´1

¯
modulo r is a divisor of the exponent 2q in (2), so

it 
an be 1, 2, q or 2q.

By Fermat's theorem, the order divides r´1. So, if the order is q or 2q then r ” 1 pmod qq.
If the order is 1 or 2 then r | pp` qq2 ´ pp ´ qq2 “ 4pq, so r “ p or r “ q. The 
ase r “ p is not

possible, be
ause, by applying Fermat's theorem,

M “ pp` qqp´qpp´ qqp`q ´ 1 ” qp´qp´qqp`q ´ 1 “
`
q2
˘p ´ 1 ” q2 ´ 1 “ pq ` 1qpq ´ 1q pmod pq

and the last fa
tors q ´ 1 and q ` 1 are less than p and thus p ∤ M . Hen
e, all prime divisors

of M are either q or of the form kq ` 1; it follows that all positive divisors of M are 
ongruent

to 0 or 1 modulo q.

Now noti
e that

M “
´

pp ` qq p´q

2 pp ´ qq p`q

2 ´ 1
¯´

pp ` qq p´q

2 pp ´ qq p`q

2 ` 1
¯

is the produ
t of two 
onse
utive positive odd numbers; both should be 
ongruent to 0 or 1

modulo q. But this is impossible by the assumption q ě 5. So, there is no solution in Case 1.

Case 2: q “ 2.

By p1q, we have M | pp ` qq2q ´ pp ´ qq2q “ pp ` 2q4 ´ pp ´ 2q4, so

pp ` 2qp´2pp ´ 2qp`2 ´ 1 “ M ď pp ` 2q4 ´ pp ´ 2q4 ď pp ` 2q4 ´ 1,

pp ` 2qp´6pp ´ 2qp`2 ď 1.

If p ě 7 then the left-hand side is obviously greater than 1. For p “ 5 we have

pp ` 2qp´6pp ´ 2qp`2 “ 7´1 ¨ 37 whi
h is also too large.

There remains only one 
andidate, p “ 3, whi
h provides a solution:

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1
“ 55 ¨ 11 ´ 1

51 ¨ 15 ´ 1
“ 3124

4
“ 781.

So in Case 2 the only solution is pp, qq “ p3, 2q.
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Case 3: q “ 3.

Similarly to Case 2, we have

M | pp ` qq2q ´ pp ´ qq2q “ 64 ¨
˜ˆ

p ` 3

2

˙6

´
ˆ
p ´ 3

2

˙6
¸

.

Sin
e M is odd, we 
on
lude that

M |
ˆ
p ` 3

2

˙
6

´
ˆ
p ´ 3

2

˙
6

and

pp ` 3qp´3pp ´ 3qp`3 ´ 1 “ M ď
ˆ
p ` 3

2

˙
6

´
ˆ
p ´ 3

2

˙
6

ď
ˆ
p ` 3

2

˙
6

´ 1,

64pp ` 3qp´9pp ´ 3qp`3 ď 1.

If p ě 11 then the left-hand side is obviously greater than 1. If p “ 7 then the left-hand side is

64 ¨ 10´2 ¨ 410 ą 1. If p “ 5 then the left-hand side is 64 ¨ 8´4 ¨ 28 “ 22 ą 1. Therefore, there is

no solution in Case 3.
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N6.

Find the smallest positive integer n, or show that no su
h n exists, with the following

property: there are in�nitely many distin
t n-tuples of positive rational numbers pa1, a2, . . . , anq
su
h that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
are integers.

(Singapore)

Answer: n “ 3.

Solution 1. For n “ 1, a1 P Zą0 and
1

a1
P Zą0 if and only if a1 “ 1. Next we show that

(i) There are �nitely many px, yq P Q2

ą0
satisfying x ` y P Z and

1

x
` 1

y
P Z

Write x “ a
b
and y “ c

d
with a, b, c, d P Zą0 and gcdpa, bq “ gcdpc, dq “ 1. Then x ` y P Z

and

1

x
` 1

y
P Z is equivalent to the two divisibility 
onditions

bd | ad ` bc p1q and ac | ad ` bc p2q

Condition (1) implies that d | ad ` bc ðñ d | bc ðñ d | b sin
e gcdpc, dq “ 1. Still

from (1) we get b | ad ` bc ðñ b | ad ðñ b | d sin
e gcdpa, bq “ 1. From b | d and

d | b we have b “ d.

An analogous reasoning with 
ondition (2) shows that a “ c. Hen
e x “ a
b

“ c
d

“ y, i.e.,

the problem amounts to �nding all x P Qą0 su
h that 2x P Zą0 and

2

x
P Zą0. Letting

n “ 2x P Zą0, we have that

2

x
P Zą0 ðñ 4

n
P Zą0 ðñ n “ 1, 2 or 4, and there are

�nitely many solutions, namely px, yq “ p1

2
, 1

2
q, p1, 1q or p2, 2q.

(ii) There are in�nitely many triples px, y, zq P Q2

ą0
su
h that x`y` z P Z and

1

x
` 1

y
` 1

z
P Z.

We will look for triples su
h that x ` y ` z “ 1, so we may write them in the form

px, y, zq “
ˆ

a

a ` b ` c
,

b

a ` b ` c
,

c

a ` b ` c

˙
with a, b, c P Zą0

We want these to satisfy

1

x
` 1

y
` 1

z
“ a ` b ` c

a
` a ` b ` c

b
` a ` b ` c

c
P Z ðñ b ` c

a
` a ` c

b
` a ` b

c
P Z

Fixing a “ 1, it su�
es to �nd in�nitely many pairs pb, cq P Z2

ą0
su
h that

1

b
` 1

c
` c

b
` b

c
“ 3 ðñ b2 ` c2 ´ 3bc ` b ` c “ 0 p˚q

To show that equation p˚q has in�nitely many solutions, we use Vieta jumping (also known

as root �ipping): starting with b “ 2, c “ 3, the following algorithm generates in�nitely

many solutions. Let c ě b, and view p˚q as a quadrati
 equation in b for c �xed:

b2 ´ p3c ´ 1q ¨ b ` pc2 ` cq “ 0 p˚˚q

Then there exists another root b0 P Z of p˚˚q whi
h satis�es b`b0 “ 3c´1 and b¨b0 “ c2`c.

Sin
e c ě b by assumption,

b0 “ c2 ` c

b
ě c2 ` c

c
ą c

Hen
e from the solution pb, cq we obtain another one pc, b0q with b0 ą c, and we 
an then

�jump� again, this time with c as the �variable� in the quadrati
 p˚q. This algorithm will

generate an in�nite sequen
e of distin
t solutions, whose �rst terms are

p2, 3q, p3, 6q, p6, 14q, p14, 35q, p35, 90q, p90, 234q, p234, 611q, p611, 1598q, p1598, 4182q, . . .
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Comment. Although not needed for solving this problem, we may also expli
itly solve the re
ursion

given by the Vieta jumping. De�ne the sequen
e pxnq as follows:

x0 “ 2, x1 “ 3 and xn`2 “ 3xn`1 ´ xn ´ 1 for n ě 0

Then the triple

px, y, zq “
ˆ

1

1 ` xn ` xn`1

,
xn

1 ` xn ` xn`1

,
xn`1

1 ` xn ` xn`1

˙

satis�es the problem 
onditions for all n P N. It is easy to show that xn “ F2n`1 `1, where Fn denotes

the n-th term of the Fibona

i sequen
e (F0 “ 0, F1 “ 1, and Fn`2 “ Fn`1 ` Fn for n ě 0).

Solution 2. Call the n-tuples pa1, a2, . . . , anq P Qn
ą0

satisfying the 
onditions of the problem

statement good, and those for whi
h

fpa1, . . . , anq def“ pa1 ` a2 ` ¨ ¨ ¨ ` anq
ˆ

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙

is an integer pretty. Then good n-tuples are pretty, and if pb1, . . . , bnq is pretty then

ˆ
b1

b1 ` b2 ` ¨ ¨ ¨ ` bn
,

b2

b1 ` b2 ` ¨ ¨ ¨ ` bn
, . . . ,

bn

b1 ` b2 ` ¨ ¨ ¨ ` bn

˙

is good sin
e the sum of its 
omponents is 1, and the sum of the re
ipro
als of its 
omponents

equals fpb1, . . . , bnq. We de
lare pretty n-tuples proportional to ea
h other equivalent sin
e they

are pre
isely those whi
h give rise to the same good n-tuple. Clearly, ea
h su
h equivalen
e 
lass


ontains exa
tly one n-tuple of positive integers having no 
ommon prime divisors. Call su
h

n-tuple a primitive pretty tuple. Our task is to �nd in�nitely many primitive pretty n-tuples.

For n “ 1, there is 
learly a single primitive 1-tuple. For n “ 2, we have fpa, bq “ pa`bq2

ab
,

whi
h 
an be integral (for 
oprime a, b P Zą0) only if a “ b “ 1 (see for instan
e (i) in the �rst

solution).

Now we 
onstru
t in�nitely many primitive pretty triples for n “ 3. Fix b, c, k P Zą0; we

will try to �nd su�
ient 
onditions for the existen
e of an a P Qą0 su
h that fpa, b, cq “ k.

Write σ “ b ` c, τ “ bc. From fpa, b, cq “ k, we have that a should satisfy the quadrati


equation

a2 ¨ σ ` a ¨ pσ2 ´ pk ´ 1qτq ` στ “ 0 (1)

whose dis
riminant is

∆ “ pσ2 ´ pk ´ 1qτq2 ´ 4σ2τ “ ppk ` 1qτ ´ σ2q2 ´ 4kτ 2.

We need it to be a square of an integer, say, ∆ “ M2
for some M P Z, i.e., we want

ppk ` 1qτ ´ σ2q2 ´ M2 “ 2k ¨ 2τ 2

so that it su�
es to set

pk ` 1qτ ´ σ2 “ τ 2 ` k, M “ τ 2 ´ k.

The �rst relation reads σ2 “ pτ ´ 1qpk ´ τq, so if b and c satisfy

τ ´ 1 | σ2
i.e. bc ´ 1 | pb ` cq2 (2)

then k “ σ2

τ´1
` τ will be integral, and we �nd rational solutions to (1), namely

a “ σ

τ ´ 1
“ b ` c

bc ´ 1
or a “ τ 2 ´ τ

σ
“ bc ¨ pbc ´ 1q

b ` c
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We 
an now �nd in�nitely many pairs pb, cq satisfying (2) by Vieta jumping. For example,

if we impose

pb ` cq2 “ 5 ¨ pbc ´ 1q
then all pairs pb, cq “ pvi, vi`1q satisfy the above 
ondition, where

v1 “ 2, v2 “ 3, vi`2 “ 3vi`1 ´ vi for i ě 0

For pb, cq “ pvi, vi`1q, one of the solutions to (1) will be a “ pb ` cq{pbc ´ 1q “ 5{pb ` cq “
5{pvi ` vi`1q. Then the pretty triple pa, b, cq will be equivalent to the integral pretty triple

p5, vipvi ` vi`1q, vi`1pvi ` vi`1qq

After possibly dividing by 5, we obtain in�nitely many primitive pretty triples, as required.

Comment. There are many other in�nite series of pb, cq “ pvi, vi`1q with bc ´ 1 | pb ` cq2. Some of

them are:

v1 “ 1, v2 “ 3, vi`1 “ 6vi ´ vi´1, pvi ` vi`1q2 “ 8 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 2, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 5, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q

(the last two are in fa
t one sequen
e prolonged in two possible dire
tions).
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N7.

Say that an ordered pair px, yq of integers is an irredu
ible latti
e point if x and y

are relatively prime. For any �nite set S of irredu
ible latti
e points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer 
oe�
ients, of degree at least 1,

su
h that fpx, yq “ 1 for ea
h px, yq in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

Solution 1. First of all, we note that �nding a homogenous polynomial fpx, yq su
h that

fpx, yq “ ˘1 is enough, be
ause we then have f 2px, yq “ 1. Label the irredu
ible latti
e points

px1, y1q through pxn, ynq. If any two of these latti
e points pxi, yiq and pxj , yjq lie on the same

line through the origin, then pxj , yjq “ p´xi,´yiq be
ause both of the points are irredu
ible.

We then have fpxj , yjq “ ˘fpxi, yiq whenever f is homogenous, so we 
an assume that no two

of the latti
e points are 
ollinear with the origin by ignoring the extra latti
e points.

Consider the homogenous polynomials ℓipx, yq “ yix ´ xiy and de�ne

gipx, yq “
ź

j‰i

ℓjpx, yq.

Then ℓipxj , yjq “ 0 if and only if j “ i, be
ause there is only one latti
e point on ea
h line

through the origin. Thus, gipxj , yjq “ 0 for all j ‰ i. De�ne ai “ gipxi, yiq, and note that

ai ‰ 0.

Note that gipx, yq is a degree n ´ 1 polynomial with the following two properties:

1. gipxj , yjq “ 0 if j ‰ i.

2. gipxi, yiq “ ai.

For any N ě n ´ 1, there also exists a polynomial of degree N with the same two proper-

ties. Spe
i�
ally, let Iipx, yq be a degree 1 homogenous polynomial su
h that Iipxi, yiq “ 1,

whi
h exists sin
e pxi, yiq is irredu
ible. Then Iipx, yqN´pn´1qgipx, yq satis�es both of the above

properties and has degree N .

We may now redu
e the problem to the following 
laim:

Claim: For ea
h positive integer a, there is a homogenous polynomial fapx, yq, with integer


oe�
ients, of degree at least 1, su
h that fapx, yq ” 1 pmod aq for all relatively prime px, yq.
To see that this 
laim solves the problem, take a to be the least 
ommon multiple of the

numbers ai (1 ď i ď n). Take fa given by the 
laim, 
hoose some power fapx, yqk that has

degree at least n ´ 1, and subtra
t appropriate multiples of the gi 
onstru
ted above to obtain

the desired polynomial.

We prove the 
laim by fa
toring a. First, if a is a power of a prime pa “ pkq, then we may


hoose either:

• fapx, yq “ pxp´1 ` yp´1qφpaq
if p is odd;

• fapx, yq “ px2 ` xy ` y2qφpaq
if p “ 2.

Now suppose a is any positive integer, and let a “ q1q2 ¨ ¨ ¨ qk, where the qi are prime powers,

pairwise relatively prime. Let fqi be the polynomials just 
onstru
ted, and let Fqi be powers of

these that all have the same degree. Note that

a

qi
Fqipx, yq ” a

qi
pmod aq

for any relatively prime x, y. By Bézout's lemma, there is an integer linear 
ombination of

the

a
qi

that equals 1. Thus, there is a linear 
ombination of the Fqi su
h that Fqipx, yq ” 1

pmod aq for any relatively prime px, yq; and this polynomial is homogenous be
ause all the Fqi

have the same degree.
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Solution 2. As in the previous solution, label the irredu
ible latti
e points px1, y1q, . . . , pxn, ynq
and assume without loss of generality that no two of the points are 
ollinear with the origin.

We indu
t on n to 
onstru
t a homogenous polynomial fpx, yq su
h that fpxi, yiq “ 1 for all

1 ď i ď n.

If n “ 1: Sin
e x1 and y1 are relatively prime, there exist some integers c, d su
h that

cx1 ` dy1 “ 1. Then fpx, yq “ cx ` dy is suitable.

If n ě 2: By the indu
tion hypothesis we already have a homogeneous polynomial gpx, yq
with gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1. Let j “ deg g,

gnpx, yq “
n´1ź

k“1

pykx ´ xkyq,

and an “ gnpxn, ynq. By assumption, an ‰ 0. Take some integers c, d su
h that cxn ` dyn “ 1.

We will 
onstru
t fpx, yq in the form

fpx, yq “ gpx, yqK ´ C ¨ gnpx, yq ¨ pcx ` dyqL,

where K and L are some positive integers and C is some integer. We assume that L “ Kj´n`1

so that f is homogenous.

Due to gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1 and gnpx1, y1q “ . . . “ gnpxn´1, yn´1q “ 0, the

property fpx1, y1q “ . . . “ fpxn´1, yn´1q “ 1 is automati
ally satis�ed with any 
hoi
e of K,L,

and C.

Furthermore,

fpxn, ynq “ gpxn, ynqK ´ C ¨ gnpxn, ynq ¨ pcxn ` dynqL “ gpxn, ynqK ´ Can.

If we have an exponent K su
h that gpxn, ynqK ” 1 pmod anq, then we may 
hoose C su
h that

fpxn, ynq “ 1. We now 
hoose su
h a K.

Consider an arbitrary prime divisor p of an. By

p | an “ gnpxn, ynq “
n´1ź

k“1

pykxn ´ xkynq,

there is some 1 ď k ă n su
h that xkyn ” xnyk pmod pq. We �rst show that xkxn or ykyn is

relatively prime with p. This is trivial in the 
ase xkyn ” xnyk ı 0 pmod pq. In the other 
ase,

we have xkyn ” xnyk ” 0 pmod pq, If, say p | xk, then p ∤ yk be
ause pxk, ykq is irredu
ible, so

p | xn; then p ∤ yn be
ause pxk, ykq is irredu
ible. In summary, p | xk implies p ∤ ykyn. Similarly,

p | yn implies p ∤ xkxn.

By the homogeneity of g we have the 
ongruen
es

xd
k ¨ gpxn, ynq “ gpxkxn, xkynq ” gpxkxn, ykxnq “ xd

n ¨ gpxk, ykq “ xd
n pmod pq p1.1q

and

ydk ¨ gpxn, ynq “ gpykxn, ykynq ” gpxkyn, ykynq “ ydn ¨ gpxk, ykq “ ydn pmod pq. p1.2q

If p ∤ xkxn, then take the pp´1qst power of p1.1q; otherwise take the pp´1qst power of p1.2q;
by Fermat's theorem, in both 
ases we get

gpxn, ynqp´1 ” 1 pmod pq.

If pα | m, then we have

gpxn, ynqpα´1pp´1q ” 1 pmod pαq,

whi
h implies that the exponent K “ n ¨ ϕpanq, whi
h is a multiple of all pα´1pp ´ 1q, is a
suitable 
hoi
e. (The fa
tor n is added only so that K ě n and so L ą 0.)



Shortlisted problems � solutions 87

Comment. It is possible to show that there is no 
onstant C for whi
h, given any two irredu
ible

latti
e points, there is some homogenous polynomial f of degree at most C with integer 
oe�
ients

that takes the value 1 on the two points. Indeed, if one of the points is p1, 0q and the other is pa, bq,
the polynomial fpx, yq “ a0x

n ` a1x
n´1y ` ¨ ¨ ¨ ` any

n
should satisfy a0 “ 1, and so an ” 1 pmod bq.

If a “ 3 and b “ 2k with k ě 3, then n ě 2k´2
. If we 
hoose 2k´2 ą C, this gives a 
ontradi
tion.
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N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a fun
tion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)

Solution 1. Denote by A the set of all pairs of 
oprime positive integers. Noti
e that for

every pa, bq P A there exists a pair pu, vq P Z2
with ua ` vb “ 1. Moreover, if pu0, v0q is one

su
h pair, then all su
h pairs are of the form pu, vq “ pu0 ` kb, v0 ´ kaq, where k P Z. So there

exists a unique su
h pair pu, vq with ´b{2 ă u ď b{2; we denote this pair by pu, vq “ gpa, bq.
Lemma. Let pa, bq P A and pu, vq “ gpa, bq. Then fpa, bq “ 1 ðñ u ą 0.

Proof. We indu
t on a ` b. The base 
ase is a ` b “ 2. In this 
ase, we have that a “ b “ 1,

gpa, bq “ gp1, 1q “ p0, 1q and fp1, 1q “ 0, so the 
laim holds.

Assume now that a` b ą 2, and so a ‰ b, sin
e a and b are 
oprime. Two 
ases are possible.

Case 1: a ą b.

Noti
e that gpa ´ b, bq “ pu, v ` uq, sin
e upa ´ bq ` pv ` uqb “ 1 and u P p´b{2, b{2s. Thus
fpa, bq “ 1 ðñ fpa ´ b, bq “ 1 ðñ u ą 0 by the indu
tion hypothesis.

Case 2: a ă b. (Then, 
learly, b ě 2.)

Now we estimate v. Sin
e vb “ 1 ´ ua, we have

1 ` ab

2
ą vb ě 1 ´ ab

2
, so

1 ` a

2
ě 1

b
` a

2
ą v ě 1

b
´ a

2
ą ´a

2
.

Thus 1 ` a ą 2v ą ´a, so a ě 2v ą ´a, hen
e a{2 ě v ą ´a{2, and thus gpb, aq “ pv, uq.
Observe that fpa, bq “ 1 ðñ fpb, aq “ 0 ðñ fpb ´ a, aq “ 0. We know from Case 1

that gpb ´ a, aq “ pv, u ` vq. We have fpb ´ a, aq “ 0 ðñ v ď 0 by the indu
tive hypothesis.

Then, sin
e b ą a ě 1 and ua ` vb “ 1, we have v ď 0 ðñ u ą 0, and we are done. l

The Lemma proves that, for all pa, bq P A, fpa, bq “ 1 if and only if the inverse of a

modulo b, taken in t1, 2, . . . , b ´ 1u, is at most b{2. Then, for any odd prime p and integer

n su
h that n ı 0 pmod pq, fpn2, pq “ 1 i� the inverse of n2 mod p is less than p{2. Sin
e

tn2 mod p : 1 ď n ď p ´ 1u “ tn´2 mod p : 1 ď n ď p ´ 1u, in
luding multipli
ities (two for

ea
h quadrati
 residue in ea
h set), we 
on
lude that the desired sum is twi
e the number of

quadrati
 residues that are less than p{2, i.e.,
p´1ÿ

n“1

fpn2, pq “ 2

ˇ̌
ˇ̌
"
k : 1 ď k ď p ´ 1

2
and k2 mod p ă p

2

*ˇ̌
ˇ̌ . (1)

Sin
e the number of perfe
t squares in the interval r1, p{2q is t
a
p{2u ą

a
p{2 ´ 1, we


on
lude that

p´1ÿ

n“1

fpn2, pq ą 2

ˆc
p

2
´ 1

˙
“
a
2p ´ 2.
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Solution 2. We provide a di�erent proof for the Lemma. For this purpose, we use 
ontinued

fra
tions to �nd gpa, bq “ pu, vq expli
itly.
The fun
tion f is 
ompletely determined on A by the following

Claim. Represent a{b as a 
ontinued fra
tion; that is, let a0 be an integer and a1, . . . , ak be

positive integers su
h that ak ě 2 and

a

b
“ a0 ` 1

a1 ` 1

a2 ` 1

¨ ¨ ¨ ` 1

ak

“ ra0; a1, a2, . . . , aks.

Then fpa, bq “ 0 ðñ k is even.

Proof. We indu
t on b. If b “ 1, then a{b “ ras and k “ 0. Then, for a ě 1, an easy indu
tion

shows that fpa, 1q “ fp1, 1q “ 0.

Now 
onsider the 
ase b ą 1. Perform the Eu
lidean division a “ qb ` r, with 0 ď r ă b.

We have r ‰ 0 be
ause gcdpa, bq “ 1. Hen
e

fpa, bq “ fpr, bq “ 1 ´ fpb, rq, a

b
“ rq; a1, . . . , aks, and

b

r
“ ra1; a2, . . . , aks.

Then the number of terms in the 
ontinued fra
tion representations of a{b and b{r di�er by
one. Sin
e r ă b, the indu
tive hypothesis yields

fpb, rq “ 0 ðñ k ´ 1 is even,

and thus

fpa, bq “ 0 ðñ fpb, rq “ 1 ðñ k ´ 1 is odd ðñ k is even. l

Now we use the following well-known properties of 
ontinued fra
tions to prove the Lemma:

Let pi and qi be 
oprime positive integers with ra0; a1, a2, . . . , ais “ pi{qi, with the notation

borrowed from the Claim. In parti
ular, a{b “ ra0; a1, a2, . . . , aks “ pk{qk. Assume that k ą 0

and de�ne q´1 “ 0 if ne
essary. Then

• qk “ akqk´1 ` qk´2, and

• aqk´1 ´ bpk´1 “ pkqk´1 ´ qkpk´1 “ p´1qk´1
.

Assume that k ą 0. Then ak ě 2, and

b “ qk “ akqk´1 ` qk´2 ě akqk´1 ě 2qk´1 ùñ qk´1 ď b

2
,

with stri
t inequality for k ą 1, and

p´1qk´1qk´1a ` p´1qkpk´1b “ 1.

Now we �nish the proof of the Lemma. It is immediate for k “ 0. If k “ 1, then p´1qk´1 “ 1,

so

´b{2 ă 0 ď p´1qk´1qk´1 ď b{2.
If k ą 1, we have qk´1 ă b{2, so

´b{2 ă p´1qk´1qk´1 ă b{2.

Thus, for any k ą 0, we �nd that gpa, bq “ pp´1qk´1qk´1, p´1qkpk´1q, and so

fpa, bq “ 1 ðñ k is odd ðñ u “ p´1qk´1qk´1 ą 0.
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Comment 1. The Lemma 
an also be established by observing that f is uniquely de�ned on A,
de�ning f1pa, bq “ 1 if u ą 0 in gpa, bq “ pu, vq and f1pa, bq “ 0 otherwise, and verifying that f1
satis�es all the 
onditions from the statement.

It seems that the main di�
ulty of the problem is in 
onje
turing the Lemma.

Comment 2. The 
ase p ” 1 pmod 4q is, in fa
t, easier than the original problem. We have, in

general, for 1 ď a ď p ´ 1,

fpa, pq “ 1´fpp, aq “ 1´fpp´a, aq “ fpa, p´aq “ fpa`pp´aq, p´aq “ fpp, p´aq “ 1´fpp´a, pq.

If p ” 1 pmod 4q, then a is a quadrati
 residue modulo p if and only if p ´ a is a quadrati
 residue

modulo p. Therefore, denoting by rk (with 1 ď rk ď p ´ 1) the remainder of the division of k2 by p,

we get

p´1ÿ

n“1

fpn2, pq “
p´1ÿ

n“1

fprn, pq “ 1

2

p´1ÿ

n“1

pfprn, pq ` fpp ´ rn, pqq “ p ´ 1

2
.

Comment 3. The estimate for the sum

řp
n“1

fpn2, pq 
an be improved by re�ning the �nal argument

in Solution 1. In fa
t, one 
an prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 1

16
.

By 
ounting the number of perfe
t squares in the intervals rkp, pk ` 1{2qpq, we �nd that

p´1ÿ

n“1

fpn2, pq “
p´1ÿ

k“0

˜[dˆ
k ` 1

2

˙
p

_

´
Ya

kp
]¸

. (2)

Ea
h summand of (2) is non-negative. We now estimate the number of positive summands. Suppose

that a summand is zero, i.e., [dˆ
k ` 1

2

˙
p

_

“
Ya

kp
]

“: q.

Then both of the numbers kp and kp ` p{2 lie within the interval rq2, pq ` 1q2q. Hen
e
p

2
ă pq ` 1q2 ´ q2,

whi
h implies

q ě p ´ 1

4
.

Sin
e q ď
?
kp, if the kth summand of (2) is zero, then

k ě q2

p
ě pp ´ 1q2

16p
ą p ´ 2

16
ùñ k ě p ´ 1

16
.

So at least the �rst rp´1

16
s summands (from k “ 0 to k “ rp´1

16
s ´ 1) are positive, and the result

follows.

Comment 4. The bound 
an be further improved by using di�erent methods. In fa
t, we prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 3

4
.

To that end, we use the Legendre symbol

ˆ
a

p

˙
“

$
’&

’%

0 if p � a

1 if a is a nonzero quadrati
 residue mod p

´1 otherwise.

We start with the following Claim, whi
h tells us that there are not too many 
onse
utive quadrati


residues or 
onse
utive quadrati
 non-residues.
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Claim.

řp´1

n“1

`
n
p

˘`
n`1

p

˘
“ ´1.

Proof. We have

`
n
p

˘`
n`1

p

˘
“
`npn`1q

p

˘
. For 1 ď n ď p´1, we get that npn`1q ” n2p1`n´1q pmod pq,

hen
e

`npn`1q
p

˘
“

`
1`n´1

p

˘
. Sin
e t1 ` n´1 mod p : 1 ď n ď p ´ 1u “ t0, 2, 3, . . . , p ´ 1 mod pu, we �nd

p´1ÿ

n“1

ˆ
n

p

˙ˆ
n ` 1

p

˙
“

p´1ÿ

n“1

ˆ
1 ` n´1

p

˙
“

p´1ÿ

n“1

ˆ
n

p

˙
´ 1 “ ´1,

be
ause

řp
n“1

`
n
p

˘
“ 0. l

Observe that (1) be
omes

p´1ÿ

n“1

fpn2, pq “ 2 |S| , S “
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ 1

*
.

We 
onne
t S with the sum from the 
laim by pairing quadrati
 residues and quadrati
 non-residues.

To that end, de�ne

S1 “
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ ´1

*

T “
"
r :

p ` 1

2
ď r ď p ´ 1 and

ˆ
r

p

˙
“ 1

*

T 1 “
"
r :

p ` 1

2
ď r ď p ´ 1 and

ˆ
r

p

˙
“ ´1

*

Sin
e there are exa
tly pp ´ 1q{2 nonzero quadrati
 residues modulo p, |S| ` |T | “ pp ´ 1q{2. Also
we obviously have |T | ` |T 1| “ pp ´ 1q{2. Then |S| “ |T 1|.

For the sake of brevity, de�ne t “ |S| “ |T 1|. If
`
n
p

˘`
n`1

p

˘
“ ´1, then exa
tly of one the numbers`

n
p

˘
and

`
n`1

p

˘
is equal to 1, so

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 3

2
and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď |S| ` |S ´ 1| “ 2t.

On the other hand, if

`
n
p

˘`
n`1

p

˘
“ ´1, then exa
tly one of

`
n
p

˘
and

`
n`1

p

˘
is equal to ´1, and

ˇ̌
ˇ̌
"
n :

p ` 1

2
ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď |T 1| ` |T 1 ´ 1| “ 2t.

Thus, taking into a

ount that the middle term

` pp´1q{2
p

˘` pp`1q{2
p

˘
may happen to be ´1,

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď 4t ` 1.

This implies that

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ 1

*ˇ̌
ˇ̌ ě pp ´ 2q ´ p4t ` 1q “ p ´ 4t ´ 3,

and so

´1 “
p´1ÿ

n“1

ˆ
n

p

˙ˆ
n ` 1

p

˙
ě p ´ 4t ´ 3 ´ p4t ` 1q “ p ´ 8t ´ 4,

whi
h implies 8t ě p ´ 3, and thus

p´1ÿ

n“1

fpn2, pq “ 2t ě p ´ 3

4
.



92 IMO 2017, Rio de Janeiro

Comment 5. It is possible to prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 1

2
.

The 
ase p ” 1 pmod 4q was already mentioned, and it is the equality 
ase. If p ” 3 pmod 4q,
then, by a theorem of Diri
hlet, we have

ˇ̌
ˇ̌
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ 1

*ˇ̌
ˇ̌ ą p ´ 1

4
,

whi
h implies the result.

See https://en.wikipedia.org/wiki/Quadrati
_residue#Diri
hlet.27s_formulas for the full

statement of the theorem. It seems that no elementary proof of it is known; a proof using 
omplex

analysis is available, for instan
e, in Chapter 7 of the book Quadrati
 Residues and Non-Residues:

Sele
ted Topi
s, by Steve Wright, available in https://arxiv.org/abs/1408.0235.

https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas
https://arxiv.org/abs/1408.0235
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