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SHORT HISTORY AND SYSTEM

Mathematical competitions in Serbia have been held since 1958. In the first
years only republic competitions within the former Yugoslavia, which Serbia was a
part of, were held. The first Federal Mathematical Competition in Yugoslavia was
held in Belgrade in 1960, and since then it was held regularly every year, skipping
only 1999 for a non-mathematical reason. The system has undergone relatively few
changes. The earliest Federal Competitions were organized for 3rd and 4th grades
of high school only; 2nd grade was added in 1970, and 1st grade in 1974. Since
1982, 3rd and 4th grades compose a single category. After the breakdown of the
old Yugoslavia in 1991, the entire system was continued in the newly formed FR
Yugoslavia, later renamed Serbia and Montenegro. The separation of Montenegro
finally made the federal competition senseless as such. Thus, starting with 2007,
the federal competition and team selection exam are replaced by a two-day Serbian
Mathematical Olympiad.

Today a mathematical competition season in Serbia consists of four rounds of
increasing difficulty:

• Municipal round, held in December. The contest consists of 5 problems, each
20 points worth, to be solved in 3 hours. Students who perform well qualify
for the next round (50-60 points are usually enough).

• Regional round, held in late January in the same format as the municipal
round. Each student’s score is added to that from the municipal round.
Although the number of students qualified for the state round is bounded by
regional quotas, a total score of 110-120 should suffice.

• State (republic) round, held in March in a selected town in the country. There
are roughly 200 to 300 participants. The contest consists of 5 problems in 4
hours.

• Serbian Mathematical Olympiad (SMO), held in early April in a selected
place in the country. The participants are selected through the state round:
28 from A category (distribution among grades: 4+8+8+8), 3 from B cate-
gory (0+0+1+2), plus those members of the last year’s olympic team who did
not manage to qualify otherwise. Six most successful contestants are invited
to the olympic team.

Since 1998, contests for each grade on the three preliminary rounds are divided
into categories A (specialized schools and classes) and B (others). A student from
category B is normally allowed to work the problems for category A instead. On
the SMO, all participants work on the same problems.
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The 10-th Serbian Mathematical Olympiad (SMO) for high school students
took place in Belgrade on April 1–2, 2016. There were 31 students from Serbia
and 6 guest students - 4 from Russia and 2 from Republika Srpska (Bosnia and
Herzegovina). The average score on the contest was 9.07 points. Problems 1 and
4 were relatively easy, but few students solved problems 2, 3 and 5, and nobody
solved problem 6.

The team for the 33-rd Balkan MO and 57-th IMO was selected based on the
SMO and an additional team selection test:

Igor Medvedev Math High School, Belgrade 20 points
Nikola Pavlović HS ”Jovan Jovanović Zmaj”, Novi Sad 19 points
Aleksa Milojević Math High School, Belgrade 16 points
Ognjen Tošić Math High School, Belgrade 14 points
Aleksa Konstantinov Math High School, Belgrade 14 points
Nikola Sadovek Math High School, Belgrade 14 points

In this booklet we present the problems and full solutions of the Serbian Math-
ematical Olympiad, team selection test and the Balkan Mathematical Olympiad.

Serbian MO 2016 – Problem Selection Committee

• Vladimir Baltić
• Bojan Bašić (chairman)
• Dušan Djukić
• Miljan Knežević
• Nikola Petrović
• Marko Radovanović



3

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade , 01.04.2016.

First Day

1. Let n be a positive integer greater than 1. Prove that there exists a positive integer
m greater than nn such that

nm −mn

n+m

is a positive integer. (Nikola Petrović)

2. Given a positive integer n, define f(0, j) = f(i, 0) = 0, f(1, 1) = n and

f(i, j) =

⌊

f(i− 1, j)

2

⌋

+

⌊

f(i, j − 1)

2

⌋

for all positive integers i i j, (i, j) 6= (1, 1). How many ordered pairs of positive
integers (i, j) are there for which f(i, j) is an odd number? (Dušan Djukić)

3. Let O be the circumcenter of triangle ABC. A tangent t to the circumcircle
of triangle BOC meets the sides AB and AC at points D and E, respectively
(D,E 6≡ A). Point A′ is the reflection of A in line t. Prove that the circumcircles
of triangles A′DE and ABC are tangent to each other. (Dušan Djukić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade, 02.04.2016.

Second Day

4. In a triangle ABC (AB 6= AC), the incircle with center I is tangent to side BC at
point D. Let M be the midpoint of side BC. Prove that the perpendiculars from
points M and D to lines AI and MI respectively meet on the altitude in △ABC
from A or its extension. (Dušan Djukić)

5. Given any 2n−1 two-element subsets of set {1, 2, . . . , n}, prove that one can always
choose n of these subsets such that their union contains at most 2

3n+ 1 elements.
(Dušan Djukić)

6. Suppose a1, a2, . . . , a22016 are positive integers such that, for all n with 1 6 n 6

22016,
an 6 2016 and a1a2 · · ·an + 1 is a perfect square.

Prove that at least one of the numbers a1, a2, . . . , a22016 must be equal to 1.
(Dušan Djukić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

1. We start by noting that if m > n > 3, then nm > mn and hence nm−mn

m+n
> 0.

Indeed, the function f(x) = lnx
x

is decreasing for x > e because f ′(x) = 1−lnx
x2 < 0,

so lnn
n

> lnm
m

, i.e. m lnn > n lnm, which yields nm = em lnn > en lnm = mn.

For n = 2 we can choose m = 10. Suppose that n > 2. We have

nm −mn ≡ nm − (−n)n = nn(nm−n − (−1)n) (mod m+ n).

We shall look for m in the form m = knn−n (k ∈ N). Then m+n = knn | nm−mn

if and only if k | nm−n − (−1)n.

(1◦) If n is odd, then nm−n−(−1)n is even, so we can take k = 2 and m = 2nn−n.

(2◦) If n is even, then nm−n − (−1)n = nm−n − 1 is divisible by n− 1, so we can
take k − n− 1 and m = (n− 1)nn − n.

Remark. The inequality nm > mn for m > n > 3 can also be easily proved by
induction.

There are many possible choices for m. For instance, for n > 2 one can take
m = pnn − n, where p is any prime divisor of nnn−2n − (−1)n.

2. The answer is n.

Denote sm =
∑

i+j=m f(i, j) for m > 2. Since f(i, j) − 2[ f(i,j)2 ] equals 1 if f(i, j)
is odd and 0 otherwise, the number of odd terms among f(i, j) for i, j > 0 with
i+ j = m is

∑

i+j=m

(

f(i, j)− 2
[

f(i,j)
2

])

= sm −
∑

i+j=m

([

f(i−1,j+1)
2

]

+
[

f(i,j)
2

])

= sm − sm+1.

It follows that the number of pairs (i, j) for which f(i, j) is odd and i + j < m
equals s2 − sm = n− sm.

All that remains is to show that sm = 0 if m is big enough. Clearly, the sequence
sm is nonnegative and non-increasing, so there exist N and k such that sm = k
for all m > N . This means that f(i, j) is even whenever i + j > m. Suppose
that k > 0 and consider the smallest i for which f(i,m − i) > 0. A simple

induction yields f(i,m + r − i) = [ f(i,m−i)
2r ] for r > 1. However, if r is taken so

that 2r 6 f(i,m− i) < 2r+1, this would imply f(i,m+ r− i) = 1, contrary to the
assumption.

Second solution (U. Dinić). Consider the following game. Initially, there are n
markers at point (1, 1) in the coordinate plane. A step consists of simultaneously
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performing the following moves for all i, j: If there are m markers at point (i, j),
move exactly [m/2] of these markers to each of the points (i+ 1, j) and (i, j + 1),
thus leaving one marker at (i, j) if m is odd, and no markers if m is even. Observe
that a row or column that is nonempty at some moment can never be emptied.
Thus no marker can leave the square [1, n]× [1, n], which means that the game will
end in a finite time.

It is easy to see that after i + j − 2 steps the number of markers at point (i, j)
equals f(i, j), and that in the final position there is a marker at (i, j) if and only
if f(i, j) is odd.

3. Denote by K the tangency point of the line t and circle BOC. Let the circumcircles
of triangles BDK and CEK meet at point X 6= K. Since ∢BXC = ∢BXK +
∢KXC = ∢ADK + ∢KEA = 180◦ − ∢CAB, point X lies on the circumcircle k
of triangle ABC. Moreover, ∢DXE = ∢DXK + ∢KXE = ∢DBK+ ∢KCE =

∢CKB − ∢CAB = ∢CAB = ∢DA′E,
so X also lies on the circumcircle k1 of
triangle A′DE. We shall prove that the
circles k and k1 touch at point X .

If P is the intersection point of the lines
CK and XD, then ∢XPC = ∢XDE −
∢CKE = ∢XBK − ∢CBK = ∢XBC,
which means that P lies on circle k.
Analogously, the lines BK and XE in-
tersect at point Q on circle k. Finally,
PQ ‖ DE because ∢XPQ = ∢XBQ =
∢XDK. Therefore the triangles XDE

A

A′

B C

D

E

K
O

P

Q

X

and XPQ are homothetic with the center of homothety X , so their circumcircles
touch at X .

Second solution. Let the lines BK and CK meet the circumcircle of △ABC again
at points Q and P , respectively. Since ∢CPQ = ∢CBQ = ∢CKE, we have PQ ‖
DE. Let the lines DP and EQ meet at point X . Since the points D = PX ∩AB,
K = PC ∩ QB and E = AC ∩QX collinear, the converse Pascal theorem implies
that X lies on the same conic (circle) with points A,B,C, P,Q. Hence the triangles
XDE and XPQ are homothetic, so their circumcircles are tangent to each other
at the center of homothety X . Finally, point A′ lies on the circumcircle of △DEX
because ∢DXE = ∢PXQ = ∢PCA + ∢ABQ = ∢BKC − ∢BAC = ∢BAC =
∢DA′E.

Remark. More generally: If K is an arbitrary point inside △ABC, the tangent at
K to the circle BKC meets AB at D and AC at E, and the circles BDK and
CEK meet again at X , then the circles DEX and ABC are tangent at X .
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4. Denote by γ the inircle of △ABC, and by γa and Ia the excenter across A and

its center. Circle γa touches side BC at
point E symmetric to D about M . The
perpendicular ℓ1 from D to MI is the
radical axis of γ and circle ω with diame-
ter DE, while the perpendicular ℓ2 from
M to AI is the radical axis of circles γ
and γa (as MD = ME). Moreover, the
radical axis of γa and ω is the perpen-
dicular ℓ3 from E to MIa. The lines
ℓ1, ℓ2 and ℓ3 meet at the radical center
S of the circles γ, γa, ω. On the other

A B

D

E

I

Ia

M

S

ℓ1

ℓ2
ℓ3 C

γ

ω

γa

hand, it is well known that MI ‖ AE and MIa ‖ AD, so the lines ℓ1 and ℓ3 contain
the altitudes from D and E in triangle ADE. Therefore S is the orthocenter of
△ADE, which clearly lies on the altitude from A.

Second solution. Let S be the intersection of the perpendiculars from M and D
to AI and MI respectively, and let the line MI intersect the altitude from A in
△ABC at point J . It suffices to show that AJ = ID. Indeed, this would imply
that AJDI is parallelogram, so MS ⊥ DJ and hence D is the orthocenter of
△MSJ , which in turn implies JS ⊥ MD, i.e. AS ⊥ BC.

This can be done by a straightforward computation. Denoting by H and F
respectively the feet of the altitude and angle bisector from A and a = BC,

b = CA, c = AB, we have BF = ac
b+c

, BD = a−b+c
2 i BH = a2−b2+c2

2a , so

FH = BF −BH = |b−c|((b+c)2−a2)
2a(b+c) , FD = BF −BD = |b−c|(b+c−a)

2(b+c) and therefore
AJ
AH

= FD
FH

= a
a+b+c

= ID
AH

.

5. We shall prove by induction on k (k 6
2n−1

3 ) that one can always remove 3k
subsets such that the cardinality of the union of the remaining subsets does not
exceed n− k.

The case k = 0 is trivial. Assume that k > 1 and that we have removed 3(k − 1)
subsets so that the union of the remaining ones has at most n − k + 1 elements.
Since 2n− 1− 3(k− 1) < 2(n− k+ 1), there is an element xk from the union that
is contained in at most three of the remaining subsets. Then we can remove three
subsets so that the union of the remaining 2n−1−3k subsets does not contain xk,
which finishes the induction.

The problem statement follows for k = [n−1
3

] as n− [n−1
3

] 6 n− n−3
3

= 2
3
n+ 1.

Remark. As tempting as it might be, the probabilistic method does not seem to
easily yield the desired bound.
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6. The key observation is that, if a+1 = u2 and b = v2 are perfect squares and a > b,
then ab+1 is not a perfect square. Indeed, (uv−1)2 < ab+1 = u2v2−v2+1 < (uv)2.

Let p1, p2, . . . , pm be all prime numbers less than 2016. For 1 6 n 6 22016 consider
the binary sequence cn = (r1, r2, . . . , rm), where ri = 0 if the exponent at pi in
the product Pn = a1a2 · · ·an is even, and ri = 1 otherwise. Note that there are
only 2m possibilities for the sequence cn. Thus for every k 6 22016−2m there exist
indices s and t with k 6 s < t 6 k + 2m such that cs = ct, and then Pt/Ps is a
perfect square not exceeding 20162

m

.

Suppose that no term of the sequence (an) equals 1. Take k = 11 · 2m; then clearly
k+2m < 22016. As we have seen, for some s, t with k 6 s < t 6 k+2m the quotient
b = Pt/Ps is a perfect square, but a = Ps > Pk > 2k = 20482

m

> 20162
m

> b,
so by the above observation, a + 1 = Ps + 1 and ab + 1 = Pt + 1 cannot both be
perfect squares, a contradiction.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::



10

Additional Team Selection Test

Belgrade , 05.04.2016.

1. A sequence of polynomials Pn(x) is given by

P0(x) = x3 − 4x and Pn+1(x) = Pn(1 + x)Pn(1− x)− 1.

Prove that the polynomial P2016(x) is divisible by x2016. (Dušan Djukić)

2. Let ABCD be a square of side 4. Determine the largest positive integer k with
the following property: For an arbitrary arrangement of k points strictly inside
square ABCD, one can always find a square of side 1, entirely contained in square
ABCD (with sides not necessarily parallel to the sides of square ABCD), whose
strict interior contains none of the k given points. (Bojan Bašić)

3. Denote by w(x) the largest odd divisor of a positive integer x. Suppose that a and
b are coprime positive integers such that a+w(b+ 1) and b+w(a+ 1) are powers
of two. Prove that a+ 1 and b+ 1 are powers of two. (Dušan Djukić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

1. For n > 1, the recurrence relation implies that Pn is an even function and

Pn+2(x) = (Pn(2 + x)Pn(−x) − 1) (Pn(2− x)Pn(x)− 1)− 1
= Pn(2 + x)Pn(2− x)P 2

n(x)− (Pn(2 + x) + Pn(2− x))Pn(x),

hence Pn | Pn+2. We also observe that polynomial Pn(2+x)+Pn(2−x) is divisible
by x (and in turn by x2, being even) if x−2 | Pn(x). Therefore, if x

k(x−2) | Pn(x)
for some k > 2, then xk+2(x− 2) | Pn+2(x).

Note that P0 is an odd function and P2(x) = P0(x+2)P0(x−2)P0(x)
2+(P0(x+2)+

P0(x − 2))P0(x), implying that x2(x − 2) | P2(x). Now a simply induction yields
xn(x− 2) | Pn(x) whenever 2 | n (n ∈ N).

2. The answer is k = 15.

It is clear that k = 15 fulfils the requirements. Indeed, divide square ABCD into
16 unit squares; given any 15 points inside square ABCD, at least one of these
unit square contains no given points.

We now show that k < 16. In the square with the vertices A(−2,−2), B(2,−2),
C(2, 2), D(−2, 2), mark the 16 pointsXij(−a+i· 2a

3
,−a+j · 2a

3
) for i, j ∈ {0, 1, 2, 3},

where 1 < a < 3
2
√
2
. In order to prove that every unit square PQRS contains at

least one marked point, we shall use the following simple statement.

Lemma. If E and F respectively are points on the sides BC and CD of a unit
square ABCD such that d(A,EF ) = 1, then

√
8− 2 6 EF 6 1.

Proof. Circle (A,AB) is tangent to the segment EF at some point G; we have
EF = GE + GF = BE + DF and hence CE + CF + EF = 2. Since
EF 6 CE + CF 6

√
2EF , the statement follows. 2

It suffices to consider the following three cases.

(i) The center O of square PQRS is in-
side the square X00X03X33X30. Then at
least one of the points Xij is on a dis-

tance from O not exceeding a
√
2

2 < 1
2 ;

this point is inside square PQRS.

(ii) All four vertices P,Q,R, S are out-
side the square X00X03X33X30. Sup-
pose without loss of generality that P ∈
AD and Q ∈ AB, and consider point
W (−1,−1). The lemma implies that A B

CD

P

Q

R

S
P

Q

R

S

P

Q

R

S

(i)

(ii)

(iii)

X00 X30

X33X03
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d(X00, PQ) < d(W,PQ) 6 1, so X00 is within square PQRS.

(iii) exactly one of the vertices, say R, lies inside X00X03X33X30. Suppose without
loss of generality that P is on side BC. Since d(P,X30X33) < 1, the lemma implies
that the portion of line X30X33 inside square PQRS has a length greater than√
8− 2 > a, so it contains at least one marked point.

3. As usual, we write 2r ‖ x when 2r | x and 2r+1 ∤ x. We call a pair (a, b) a (k, l)-pair
if a+ w(b+ 1) and b+ w(a+ 1) are powers of two and 2k ‖ a+ 1 and 2l ‖ b+ 1.

Consider a (k, l)-pair (a, b); let a = 2kc− 1, b = 2ld− 1 and

a+ w(b+ 1) = 2kc+ d− 1 = 2m and b+ w(a+ 1) = 2ld+ c− 1 = 2n. (∗)

If c = 1, then also d = 1 (and vice-versa), so (a, b) = (2k − 1, 2l − 1).

Suppose that c, d > 1. It follows from (∗) that 2k ‖ d−1 = 2kb′ and 2l ‖ c−1 = 2la′

for some odd a′, b′; when substituted in (∗), these yield 2la′ + b′ + 1 = 2m−k and
2kb′ + a′ + 1 = 2n−l. From this we get 2k ‖ a′ + 1 and 2l ‖ b′ + 1, so the above
relations become

a′ + w(b′ + 1) = a′ +
b′ + 1

2l
= 2m−k−l and analogno b′ + w(a′ + 1) = 2n−k−l.

Thus (a′, b′) = (a+1−2k

2k+l , b+1−2l

2k+l ) is also a (k, l)-pair, but a′ < a and b′ < b.

Define a1 = a, b1 = b and an+1 = an+1−2k

2k+l , bn+1 = bn+1−2l

2k+l . By the above

consideration, each pair (ai, bi) is a (k, l)-pair, and an = 2k − 1 and bn = 2l − 1 for
some n. Going backwards, we easily find that

a =
2n(k+l) − 1

2k+l − 1
(2k − 1) and b =

2n(k+l) − 1

2k+l − 1
(2l − 1).

Since a and b are coprime, we finally infer that n = 1, so a = 2k −1 and b = 2l−1.
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The 33-rd Balkan Mathematical Olympiad was held from May 5 to May 10 in
Tirana in Albania. The results of the Serbian contestants are shown below:

1 2 3 4 Total
Igor Medvedev 10 10 10 2 32 Gold medal
Nikola Pavlović 2 10 9 0 21 Bronze medal
Aleksa Milojević 10 10 10 10 40 Gold medal

Aleksa Konstantinov 10 10 9 0 29 Bronze medal
Ognjen Tošić 10 10 10 0 30 Silver medal
Nikola Sadovek 10 10 9 0 29 Bronze medal

Due to three almost equally easy problems, the final results were rather close. All
in all, 12 contestants (7 official + 5 guests) with 32-40 points were awarded gold
medals, 20 (12+8) with 30-31 points were awarded silver medals, and 37 (21+16)
with 17-29 points were awarded bronze medals.

Here is the (unofficial) team ranking:

Member Countries Guest Teams
1. Serbia 181 Kazakhstan 181
2. Romania 180 United Kingdom 152
3. Turkey 172 Italy 150
4. Bulgaria 170 Saudi Arabia 145
5. Greece 161 France 106
6. Bosnia and Herzegovina 129 Azerbaijan 71
7. Moldova 117 Turkmenistan 64
8. Cyprus 69 Albania B 14
9. Macedonia, FYR 39
10. Montenegro 30
11. Albania 27
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BALKAN MATHEMATICAL OLYMPIAD

Tirana, Albania , 07.05.2016.

1. Find all injective functions f : R → R such that for every real number x and
positive integer n,

∣

∣

∣

∣

∣

n
∑

i=1

i (f(x+ i+ 1)− f(f(x+ i)))

∣

∣

∣

∣

∣

< 2016.

(Macedonia, FYR)

2. Let ABCD be a cyclic quadrilateral with AB < CD. Its diagonals AC and BD
meet at points F , and lines AD and BC meet at point E. Let K and L respectively
be the orthogonal projections of F onto the lines AD and BC, and let M , S and
T respectively be the midpoints of segments EF , CF and DF . Prove that the
second intersection point of circumcircles of triangles MKT and MLS lies on the
segment CD. (Greece)

3. Find all monic polynomials f with integer coefficients having the following property:
There is a positive integer N such that 2(f(p)!)+1 is divisible by p for every prime
number p > N for which f(p) is positive.

Remark: A polynomial is monic if its leading coefficient is 1. (Greece)

4. The plane is divided into unit squares by two sets of parallel lines, forming an infinite
grid. Each unit square is colored with one of 1201 colors so that no rectangle with
perimeter 100 contains two squares of the same color. Show that no rectangle of
size 1× 1201 (or 1201× 1) contains two squares of the same color.

Remark: Any rectangle is assumed here to have sides contained in the lines of the
grid. (Bulgaria)

Time allowed: 270 minutes.
Each problem is worth 10 points.
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SOLUTIONS

1. Denote S(x, n) =
∑n

i=1 i{f(x+ i+ 1)− f(f(x+ i))}. Fix x ∈ R. Subtracting the
inequalities |S(x− n, n)| < 2016 and |S(x− n, n− 1)| < 2016 we obtain

n · |f(x+ 1)− f(f(x))| = |S(x− n, n)− S(x− n, n− 1)| < 4032 for each n.

This is possible only if f(f(x)) = f(x+1), which by injectivity implies f(x) = x+1.

2. We claim that the circumcircles of trian-
gles MKT and MLS both pass through
the midpoint of segment CD.

The circumcircle of △MKT is the nine-
point circle of triangle DEF , so it also
passes through the midpoint P of seg-
ment DE. Since PN ‖ EC, MT ‖ ED,
MP ‖ BD and TN ‖ AC, we have
∢PMT = ∢BDA = ∢BCF = ∢PNT
in oriented angles, so N lies on the cir-
cle MKPT . Analogously, N lies on the
circle MLS.

A

B

C D

E

F
K

L

M

N

P

S T

Remark. In the case when CD is a diameter of the circumcircle of ABCD, the
circles MKT and MLS will in fact coincide.

3. Clearly, polynomial f is not constant. On the other hand, the condition of the
problem implies that p ∤ f(p)!, so f(p) < p for all p > N . Thus we must have
deg f = 1, which means that f(x) = x− c for some c ∈ N. Wilson’s theorem gives
us

2(p− c)! ≡ −1 ≡ (p− 1)! ≡ (−1)c−1(c− 1)!(p− c)! (mod p)

for every prime number p > N , so we have (−1)c−1(c − 1)! ≡ 2 (mod p), i.e,
(−1)c−1(c− 1)! = 2. Hence c = 3 and f(x) = x− 3.

4. We assume that the centers of the square cells are the integer points. We define
the diamond centered at (a, b) as the set of all cells whose centers (x, y) satisfy
|x − a| + |y − b| 6 24. Every two cells of a diamond belong to a rectangle with
perimeter 100. Since a diamond consists of 242 + 252 = 1201 cells, these must
include each of the 1201 colors exactly once.

Fix a color - say, blue. Note that every cell A belongs to at least one diamond
centered in a blue cell - indeed, the diamond centered at A contains a blue cell,
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say B, which implies that A belongs to
the diamond centered at B. On the
other hand, if any two diamonds cen-
tered at blue cells B and C share a cell
A, then the diamond centered at A con-
tains both cellsB and C, which is impos-
sible. Therefore the diamonds with blue
centers cover every cell exactly once.

It is easily checked that tiling the plane
with diamonds is unique up to symmetry (the image shows an analogous tiling
with smaller diamonds). Without loss od generality, the centers of these diamonds
are the points (x, y) such that 1201 | 24x − 25y. Since every x ∈ Z determines a
unique y modulo 1201, the problem statement follows.
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