
The 1st International Olympiad of Metropolises

September 2016

Solutions of day 1
Problem 1. Find all positive integers n such that there exist n consecutive positive
integers whose sum is a perfect square. (Pavel Kozhevnikov)

Answer: n = 2sm, where m is any odd integer, and s is either 0 or odd.

Let S(n, t) = (t+ 1) + (t+ 2) + . . .+ (t+ n) = (2t+ n+ 1)n/2.

For odd n one may put t = (n− 1)/2 and obtain S(n, t) = n2.

Let n be even, n = 2sm, where s is a positive integer, and m is odd. It
follows that 2t + n + 1 is odd. Hence 2s−1 divides S(n, t), while 2s does not.
This means that for even s the answer is negative. For odd s one may put
t = (mx2 − n− 1)/2 for some odd x > n and obtain S(n, t) = 2s−1m2x2.

Problem 2. Let a1, . . . , an be positive integers satisfying the inequality

n∑
i=1

1

ai
≤ 1

2
.

Every year, the government of Optimistica publishes its Annual Report with n eco-
nomic indicators. For each i = 1, . . . , n, the possible values of the i-th indicator are
1, 2, . . . , ai. The Annual Report is said to be optimistic if at least n − 1 indicators
have higher values than in the previous report. Prove that the government can pub-
lish optimistic Annual Reports in an infinitely long sequence.

(Ivan Mitrofanov, Fedor Petrov)

First we replace each ai by a power of 2. For every 1 ≤ i ≤ n, let ki be the

positive integer that satisfies 2ki ≤ ai < 2ki+1. Notice that
n∑

i=1

1
2ki

< 2
ai
≤ 1.

For every 1 ≤ i ≤ n, we will choose a residue class Ai modulo 2ki in such a way
that the classes A1, . . . , An are pairwise disjoint. Without loss of generality we
can assume that k1 ≤ k2 ≤ . . . ≤ kn. We choose A1, A2, . . . , An in this order.
The residue class A1 can be chosen arbitrarily. Suppose that we have already
chosen the classes A1, . . . , Ai−1. In order to find the next class Ai, we require



a residue modulo 2ki which is not used in any of A1, . . . , Ai−1. Notice that for
each j < i, the set Aj is the union of 2ki−kj different residue classes modulo

2ki . As
i−1∑
j=1

2ki−kj < 2ki

n∑
j=1

2−kj < 2ki , there are unused residues modulo 2ki

which makes it possible to choose the new class Ai.
Now let us turn to the solution of the problem. For every 1 ≤ i ≤ n, we
will use only the first 2ki values of the i-th indicator. In the beginning let all
indicators be equal to 1. In the y-th year, let the i-th indicator drop to 1 if
y ∈ Ai, otherwise let the indicator increase by 1. Notice that the i-th indicator
increases at most 2ki−1 times in a row, then drops to 1, so it never exceeds the
bound 2ki ≤ ai and therefore the values of the indicator form a valid report in
every year. Since the residue classes A1, . . . , An are pairwise disjoint, at most
one indicator drops in the same year, the reports keep optimistic.

Problem 3. Let A1A2 . . . An be a cyclic convex polygon whose circumcenter is
strictly in its interior. Let B1, B2, . . . , Bn be arbitrary points on the sides A1A2,
A2A3, . . . , AnA1, respectively, other than the vertices. Prove that

B1B2

A1A3
+

B2B3

A2A4
+ . . .+

BnB1

AnA2
> 1 .

(Nairi Sedrakyan, David Harutyunyan)

Lemma 1. Suppose that a triangle without obtuse angle is inscribed in a circle
of radius R. Then the perimeter of the triangle is greater than 4R.
Proof. Let ABC be our triangle.
Assume that triangle ABC is right. Without loss of generality ∠B = 90◦ and
AC = 2R. Then AB +BC +AC > AC +AC = 4R.
Assume that triangle ABC is acute. Let K,L,M be the midpoints of the
sides AB,BC,AC respectively. The point O is the orthocentre of the triangle
KLM , which is acute as well as the similar triangle ABC. Thus O lies inside
the triangle KLM . Let line MO intersect the segment KL at the point P . We
have AB +BC +AC = 2(AK +KL+ LC) = 2(AK +KP ) + 2(PL+ LC) >
2AP + 2PC > 2AO + 2CO = 4R (the last inequality uses that the angles
∠AOP and ∠COP are obtuse). Lemma 1 is proved.

Lemma 2. Assume that a polygon is inscribed in a circle of radius R, and
the center of the circle lies inside the polygon. Then the perimeter P of the
polygon is greater than 4R.
Proof. LetA1A2 . . . An be our polygon. The diagonalsA1A3, A1A4, . . . , A1An−1

partition it into n − 2 triangles. The point O belongs to the interior or the
boundary of A1AiAi+1. Now Lemma 2 follows from the Lemma 1:

P = (A1A2 + . . .+Ai−1Ai) +AiAi+1 + (Ai+1Ai+2 + . . .+AnA1) ≥
≥ A1Ai +AiAi+1 +Ai+1A1 > 4R .

Lemma 2 is proved.



Let us return to the problem. Let R denote the circumradius of the circle
A1A2 . . . An, letRi denote the circumradius ofBiAi+1Bi+1 (further we suppose
An+1 ≡ A1, An+2 ≡ A2, Bn+1 ≡ B1). The sine law yields BiBi+1

sin∠Ai+1
= 2Ri,

AiAi+2

sin∠Ai+1
= 2R, thus BiBi+1

AiAi+2
= 2Ri sin∠Ai+1

2R sin∠Ai+1
= Ri

R .

B1B2

A1A3
+

B2B3

A2A4
+ . . .+

BnB1

AnA2
> 1

m
R1

R
+

R2

R
+ . . .+

Rn

R
> 1

m
R1 +R2 + . . .+Rn > R .

In the triangle BiAi+1Bi+1 no side can be greater than the diameter of the
circumcircle, therefore BiAi+1 + Ai+1Bi+1 ≤ 2Ri + 2Ri = 4Ri and Ri ≥
(BiAi+1 +Ai+1Bi+1)/4. Hence it suffices to prove that

R <
B1A2 +A2B2

4
+

B2A3 +A3B3

4
+ . . .+

BnA1 +A1B1

4
=

P

4
,

but this follows from Lemma 2.
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Solutions of day 2
Problem 4. A convex quadrilateral ABCD has right angles at A and C. A point E
lies on the extension of the side AD beyond D so that ∠ABE = ∠ADC. The point
K is symmetric to the point C with respect to point A. Prove that ∠ADB = ∠AKE.

(Boyan Obukhov and Fedor Petrov)

The quadrilateral ABCD is inscribed in the circle with diameter BD. Thus
∠ADB = ∠ACB since both angles are subtended by the same arc. So, we
have to prove that the angles BCA and AKE are equal, which in turn is
equivalent to the claim that the lines BC and KE are parallel.

Note that ∠BCD + ∠CDA = ∠BAD + ∠ABE < 180◦. It implies that the
rays CB and DA have a common point which we denote by F . We have
∠BFA = 90◦−∠ADC = 90◦−∠ABE = ∠BEA. So BA is the altitude of the
isosceles triangle FBE, this yields FA = AE. On the other hand CA = AK.
So, the diagonals of the quadrilateral FCEK have a common midpoint, i.e.,
FCEK is a parallelogram. Therefore the lines FC and KE are indeed parallel
as desired.

Problem 5. Let r(x) be a polynomial of odd degree with real coefficients. Prove
that there exist only finitely many pairs of polynomials p(x) and q(x) with real
coefficients satisfying the equation (p(x))3 + q(x2) = r(x). (Fedor Petrov)

By replacing x by −x and taking difference, we get (p(x))3 − (p(−x))3 =
r(x)− r(−x) = u(x), the polynomial u(x) is non-zero, odd, and has the same
degree as r(x). We see that p(x) − p(−x) is an odd divisor of u(x). There
are only finitely many divisors of u(x) up to a constant factor. So, it suffices
to check that for any fixed odd divisor xa0(x2) of u(x) there are only finitely
many p(x) such that p(x) − p(−x) is proportional to xa0(x2), i. e., p(x) is of
the form λxa0(x

2) + b(x2), where λ 6= 0 is some unknown constant and b(t) is
some unknown polynomial. For proving finiteness we may fix also the sign of
λ. We have

u(x) = (p(x))3 − (p(−x))3 = 2xa0(x
2) ·
(
3λb2(x2) + λ3x2a20(x

2)
)
.



So, the polynomial 3λb2(t) + λ3ta20(t) (we denoted t = x2) is fixed: 3λb2(t) +
λ3ta20(t) = 3λ0b

2
0(t)+λ

3
0ta

2
0(t) for some fixed solution (λ0, b0(t)). Rewrite it as

λb2 − λ0b20 =
λ30 − λ3

3
ta20(t) .

Dividing by λ0 and factorizing the LHS as a difference of squares (which is
possible in real numbers since λ and λ0 have the same sign) we see that the
pair of polynomials

√
λ/λ0b(t) ± b0(t) have the form f(t), λ3

0−λ
3

3λ0
g(t) with

f(t) · g(t) = ta20(t). Again we may consider the case when f(t) and g(t) are
fixed up to a constant factor: f(t) = τf0(t), g(t) = τ−1g0(t). We get

2b0(t) = f(t)− λ30 − λ3

3λ0
g(t) = τf0(t)− τ−1

λ30 − λ3

3λ0
g0(t) .

If this happens for two different pairs of values (τ, λ) and (τ ′, λ′), we may take
the difference:

0 = (τ − τ ′)f0(t)−
(
τ−1

λ30 − λ3

3λ0
− (τ ′)−1

λ30 − (λ′)3

3λ0

)
g0(t) . (1)

If τ 6= τ ′, it follows that f0(t) and g0(t) are proportional; but this is impossi-
ble, since their product f0(t) · g0(t) = ta20(t) has odd degree. Otherwise, the
coefficient of f(t) in (1) is zero, hence coefficient of g(t) is also zero, from which
we obtain (λ′)3 = λ3. It means that τ and λ are fixed, hence f(t) and g(t)
are fixed, and there is at most one solution. Since on each step we diverged
into finite number of cases, there is no more than a finite number of solutions
totally.

Problem 6. In a country with n cities, some pairs of cities are connected by one-
way flights operated by one of two companies A and B. Two cities can be connected
by more than one flight in either direction. An AB-word w is called implementable
if there is a sequence of connected flights whose companies’ names form the word
w. Given that every AB-word of length 2n is implementable, prove that every finite
AB-word is implementable. (An AB-word of length k is an arbitrary sequence of k
letters A or B; e. g. AABA is a word of length 4.) (Ivan Mitrofanov)

Assume the contrary. Then there exist non-implementable words. Let w =
a1a2 . . . aN be the shortest (or one of the shortest) non-implementable word.
It is clear that N > 2n. For any integer 0 ≤ i ≤ N denote by Ai the set of all
cities that are the possible terminals of sequences of flights, that correspond
to the word a1a2 . . . ai. The set A0 consists of all cities, AN is empty. Since
there are 2n different subsets of the set of all cities, it follows by the pigeonhole
principle that Ai = Aj for some i < j.

Consider the word w′ = a1a2 . . . ai−1aiaj+1aj+2 . . . aN . Since it is shorter
than w, we have that it is implementable. Let S be a sequence of flights



implementing w′. By S1 denote the sequence of the first i flights of S, by S2

denote the sequence of the last N − j flights of S, by T denote the endpoint of
S1. By construction, T ∈ Ai. Then, since Ai = Aj , it follows that there exists
a sequence of flights S3 implementing a1a2 . . . aj and T is its terminal city.

But then the sequence of flights S3S2 corresponds to w = a1a2 . . . aN and w is
implementable. This contradiction proves the statement of the problem.
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