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SHORT HISTORY AND SYSTEM

Mathematical competitions in Serbia have been held since 1958. In the first
years only republic competitions within the former Yugoslavia, which Serbia was a
part of, were held. The first Federal Mathematical Competition in Yugoslavia was
held in Belgrade in 1960, and since then it was held regularly every year, skipping
only 1999 for a non-mathematical reason. The system has undergone relatively few
changes. The earliest Federal Competitions were organized for 3rd and 4th grades
of high school only; 2nd grade was added in 1970, and 1st grade in 1974. Since
1982, 3rd and 4th grades compose a single category. After the breakdown of the
old Yugoslavia in 1991, the entire system was continued in the newly formed FR
Yugoslavia, later renamed Serbia and Montenegro. The separation of Montenegro
finally made the federal competition senseless as such. Thus, starting with 2007,
the federal competition and team selection exam are replaced by a two-day Serbian
Mathematical Olympiad.

Today a mathematical competition season in Serbia consists of four rounds of
increasing difficulty:

• Municipal round, held in early February. The contest consists of 5 problems,
each 20 points worth, to be solved in 3 hours. Students who perform well
qualify for the next round (50-60 points are usually enough).

• Regional round, held in late February in the same format as the municipal
round. Each student’s score is added to that from the municipal round.
Although the number of students qualified for the state round is bounded by
regional quotas, a total score of 110-120 should suffice.

• State (republic) round, held in late March in a selected town in the country.
There are roughly 200 to 300 participants. The contest consists of 5 problems
in 4 hours.

• Serbian Mathematical Olympiad (SMO), held in early April in a selected
place in the country. The participants are selected through the state round:
28 from A category (distribution among grades: 4+8+8+8), 3 from B cate-
gory (0+0+1+2), plus those members of the last year’s olympic team who did
not manage to qualify otherwise. Six most successful contestants are invited
to the olympic team.

Since 1998, contests for each grade on the three preliminary rounds are divided
into categories A (specialized schools and classes) and B (others). A student from
category B is normally allowed to work the problems for category A instead. On
the SMO, all participants work on the same problems.
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The 9-th Serbian Mathematical Olympiad for high school students took place
in Belgrade on March 27–28, 2015. There were 38 students from Serbia and 4 guest
students from Republika Srpska (Bosnia and Herzegovina). The average score on
the contest was 15.26 points. Problems 1, 2 and 4 turned out to be rather easy,
while no student solved problem 3.

The team for the 32-nd Balkan MO and 56-th IMO was selected based on the
contest:

Marijana Vujadinović Math High School, Belgrade 35 points
Ognjen Tošić Math High School, Belgrade 30 points
Ivan Damnjanović HS ”Bora Stanković”, Nǐs 29 points
Aleksa Milojević Math High School, Belgrade 28 points
Aleksa Konstantinov Math High School, Belgrade 26 points
Andjela Šarković HS ”Svetozar Marković”, Nǐs 25 points

In this booklet we present the problems and full solutions of the Serbian Math-
ematical Olympiad and the Balkan Mathematical Olympiad.

Serbian MO 2015 – Problem Selection Committee

• Vladimir Baltić
• Bojan Bašić (chairman)
• Dušan Djukić
• Miljan Knežević
• Miloš Milosavljević
• Nikola Petrović
• Marko Radovanović
• Miloš Stojaković
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade , 27.03.2015.

First Day

Let ABCD be an inscribed quadrilateral and let M , N , P and Q be the midpoints1.

of the sides DA, AB, BC and CD, respectively. The diagonals AC and BD

intersect at point E, and the circumcircles of △EMN and △EPQ meet at point
F 6= E. Prove that EF ⊥ AC. (Dušan Djukić)

A natural number k is given. For n ∈ N we define fk(n) as the smallest integer2.

greater than kn such that nfk(n) is a perfect square. Prove that fk(m) = fk(n)
implies m = n. (Nikola Petrović)

A guard proposes the following game to the prisoners. All prisoners are to be3.

taken to the prison yard, where each of them will be put a hat in one of 5 possible
colors onto his head, and aligned so that each of them can see all hats but his
own. The guard will then ask the first prisoner to say aloud whether he knows
the color of his hat. If he answers “no”, he will be publicly executed. Otherwise,
he will be asked to say the color of his hat in such a way that others do not hear
his answer. If the answer is correct, he will be freed, otherwise he will be publicly
executed. The guard will then go on to the next prisoner in line and repeat the
procedure, and so on. The prisoners may devise a strategy before the game starts,
but no communication between them during the game is allowed. If there are 2015
prisoners, what is the maximal number of them that can have guaranteed freedom
using an optimal strategy? (Bojan Bašić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade, 28.03.2015.

Second Day

4. For a nonzero integer a, denote by v2(a) the largest nonnegative integer k such
that 2k | a. Given n ∈ N, determine the largest possible cardinality of a subset A

of set {1, 2, 3, . . . , 2n} with the following property:

for all x, y ∈ A with x 6= y, v2(x− y) is even.
(Dušan Djukić)

5. Prove that the inequality

x− y

xy + 2y + 1
+

y − z

yz + 2z + 1
+

z − x

zx+ 2x+ 1
> 0

holds for any nonnegative real numbers x, y and z. (Dušan Djukić)

6. Find all nonnegative integer solutions of the equation

(22015 + 1)x + 22015 = 2y + 1. (Bojan Bašić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

Since triangles EAB and EDC are similar, so are triangles EBN and ECQ. Thus1.

we have ∢MFE = ∢MNE = ∢BEN =
∢QEC = ∢EQM in oriented angles
modulo 180◦. Analogously, ∢QFE =
∢EMQ, which implies that F is the
orthocenter of triangle EMQ. Hence
EF ⊥ QM ‖ AC.

Second solution. Consider the transla-
tion T by 1

2

−→
AC. Then T (M) = Q and A B

C

D

E

F
M

N

P

Q

T (N) = P . Denote T (E) = E′. The similarity of triangles AED and BEC gives us
△AEM ∼ △BEP and hence ∢QE′E = ∢EMQ = ∢MEA = ∢BEP = ∢QPE,
so the point E′ lies on the circle PEQ. Therefore T maps the circle MEN to
the circle PEQ, so the line through their centers is parallel to AC, implying the
problem statement.

Suppose that fk(m) = fk(n) = q. Let us write q in the form q = au2 with a, u ∈ N2.

and a squarefree. Since mq = amu2 is a perfect square, so is am, i.e. m = av2 for
some v ∈ N. Similarly, we have n = aw2 for some w ∈ N.

Since fk(av
2) = au2, u is the smallest natural number greater than v

√
k. Similarly,

u is the smallest natural number greater than w
√
k, so we must have |v

√
k−w

√
k| <

1. However, this implies |v − w| < 1√
k
< 1 and therefore v = w, i.e. m = n.

Denote the colors by numbers 0, 1, 2, 3, 4. Let B be the color of the second prisoner’s3.

hat and let S be the sum modulo 5 of hat colors of all prisoners but the first two.
We shall describe a strategy of the first two prisoners which lets all the others know
S, which will in turn determine their own hat color. Thus (at least) 2013 prisoners
will be released.

The first prisoner answers No if S ∈ {0, B, B + 1} or (B, S) = (4, 1). The second
prisoner then answers No if S = 0 and answers Yes followed by the guess S other-
wise. In this way, if both answers are No, the others can deduce S = 0. Also, if
the second prisoner is released, they deduce S = B, whereas if he answers Yes and
dies, they deduce S = B + 1 (if B 6= 4) or S = 1 (if B = 4).

Suppose the first prisoner answers Yes instead (his fate does not matter). The
second then answers Yes if S ∈ {2, 4} and guesses S − 2. Then B = 0 would imply
S 6∈ {0, 1}, so the others would know that S = 2 if the second prisoner is set free,
S = 3 if he says No, and S = 4 if he says Yes and misses. Finally, if B 6= 0, since
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the first answered in the affirmative, we have S ≡ B + 2 or S ≡ B + 3 (mod 4),
and the answer of the second determines the parity of S and S itself.

It remains to show that no strategy can guarantee freedom for 2014 prisoners.
Suppose that such a strategy exists and consider five configurations differing in
the second prisoner’s hat color only. The first can say No in at most one case
(otherwise the second will not be able to determine his hat color), and in at least
three of the remaining four cases the first would have to miss, leaving the second
with insufficient data again. The proof is complete.

4. We shall prove by induction on k that set A can contain at most 2k different
elements modulo 22k. This is trivial for k = 0; let k > 0. By the induction
hypothesis, the elements of A give at most 2k−1 different residues modulo 22k−2.
Suppose that they give more than 2k residues modulo 22k. Then by the pigeonhole
principle, some three elements are equal modulo 22k−2, and among these three, two
differ by 22k−1 (mod 22k), contradiction the problem condition.

It follows that |A| 6 2[
n+1

2
]. An example with exactly 2[

n+1

2
] elements can be

obtained by including the numbers of the form
∑

i∈B 4i, where B runs through all
subsets of {0, 1, . . . , [n−1

2 ]}.

Second solution. We call a set X happy if v2(x−y) is even for all distinct x, y ∈ X ,
and unhappy if v2(x − y) is odd for all distinct x, y ∈ X . Let an and bn be the
maximal cardinalities of happy and unhappy subsets of the set Tn = {1, 2, . . . , 2n},
respectively.

Consider a happy subset A ⊂ Tn, n > 1. Since v2(2x − 2y) = v2(x − y) + 1, sets
A0 = {x

2
| x ∈ A, 2 | x} and A1 = {x−1

2
| x ∈ A, 2 ∤ x} are unhappy subsets

of Tn−1 having at most bn−1 elements each. On the other hand, if A0 ⊂ Tn−1 is
unhappy, then {2x, 2x + 1 | x ∈ A0} ⊂ Tn is a happy set with 2|A0| elements.
Therefore an = 2bn−1.

Similarly, if B ⊂ Tn is unhappy, all its elements have the same parity, so B′ =
{⌈x2 ⌉ | x ∈ B} ⊂ Tn−1 is a happy set. Conversely, if B′ ⊂ Tn−1 happy, then
B = {2x− 1 | x ∈ B′} ⊂ Tn is unhappy. Therefore bn = an−1.

The above relations yield an = 2an−2 for n > 2, so the equalities a0 = 1 and a1 = 2

imply an = 2[
n+1

2
].

5. Let us denote a = x−y
xy+2y+1

, b = y−z
yz+2z+1

and c = z−x
zx+2x+1

. Then 1+ 1
a
= xy+x+y+1

x−y

and hence a
a+1 = x−y

xy+x+y+1 = 1
y+1 − 1

x+1 . Analogously, we have b
b+1 = 1

z+1 − 1
y+1

and c
c+1 = 1

x+1 − 1
z+1 .

It follows from 0 < 1
x+1 ,

1
y+1 ,

1
z+1 < 1 that a

a+1 ,
b

b+1 ,
c

c+1 < 1, which means that

a+1, b+1, c+1 are positive. Since a
a+1

+ b
b+1

+ c
c+1

= 0, we have 1
a+1

+ 1
b+1

+ 1
c+1

= 3,
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so the Cauchy-Schwartz inequality implies (a + 1) + (b + 1) + (c + 1) > 3, i.e.
a+ b+ c > 0.

Second solution. The inequality is equivalent to

2(x− 1)2(y − z)2 + 2(y − 1)2(z − x)2 + 2(z − 1)2(x− y)2

+9(xy2 + yz2 + zx2 − 3xyz) + 3(x2y + y2z + z2x− 3xyz) > 0,

where all the summands are nonnegative by the mean inequality.

Remark. If the condition x, y, z > 0 is replaced by x, y, z > −ε for any ε > 0, the
statement is no longer valid. For example, it is false for (x, y, z) = (−ε, 1, 2

ε
).

6. The only solutions with x 6 1 are (0, 2015) and (1, 2016).

Assume that x > 1. Since 22015+1 is divisible by 3, we have (22015+1)x+22015 ≡
22015 ≡ 5 (mod 9), so 2y ≡ 4 (mod 9), which gives us y = 6k + 2 for some k ∈ N.
Now modulo 13 we have 2y + 1 = (26)k · 22 ≡ ±4 and 22015 ≡ 7 (mod 13), so
8x+7 ≡ ±4 (mod 13). This is impossible, as 8x always gives one od the remainders
1, 5, 8, 12 modulo 13.

Second solution. For x > 1 we have 2y = (22015 + 1)x + 22015 − 1 = (x+ 1)22015 +
∑x

i=2

(

x
i

)

22015i ≡ (x + 1)22015 (mod 22019), but y > 2019, so we infer 16 | x + 1.
Now reducing the equation modulo 17 and using 22015 ≡ 9 (mod 17) yields 2y ≡
10x + 8 ≡ 1015 + 8 ≡ 3 (mod 17), which is impossible.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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The 32-nd Balkan Mathematical Olympiad was held from May 3 to May 8 in
Athens in Greece. The results of the Serbian contestants are shown below:

1 2 3 4 Total
Marijana Vujadinović 10 10 10 0 30 Silver medal

Ognjen Tošić 5 10 0 0 15 Bronze medal
Ivan Damnjanović 4 0 0 0 4
Aleksa Milojević 0 10 0 0 10 H. mention

Aleksa Konstantinov 0 10 0 0 10 H. mention

Andjela Šarković 0 10 0 0 10 H. mention

To put it mildly, this is obviously not as good as we hoped. A part of the reason
could be the simple inequality in problem 1 - seemingly easy for everyone except for
the Serbian team. Problems 3 and 4 looked standard but nevertheless turned out
to be harder. At the end, 7 contestants (6 official + 1 guest) with 31-40 points were
awarded gold medals, 15 (13+2) with 24-30 points were awarded silver medals, and
55 (22+33) with 12-23 points were awarded bronze medals.

Here is the (unofficial) team ranking:

Member Countries Guest Teams
1. Turkey 177 Turkmenistan 127
2. Romania 171 Kazakhstan 118
3. Bulgaria 156 Greece B 97
4. Greece 133 Tajikistan 97
5. Moldova 106 Italy 90
6. Bosnia and Herzegovina 105 Saudi Arabia 79
7. Macedonia (FYR) 79 UK and Ireland 68
7. Serbia 79 Azerbaijan 61
9. Cyprus 45 Kyrgyzstan 14
10. Albania 38 Iran (independent) 8
11. Montenegro 3
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BALKAN MATHEMATICAL OLYMPIAD

Athens, Greece , 05.05.2015.

1. Let a, b and c be positive real numbers. Prove that

a3b6 + b3c6 + c3a6 + 3a3b3c3 > abc(a3b3 + b3c3 + c3a3) + a2b2c2(a3 + b3 + c3).

(Montenegro)

2. Let ABC be a scalene triangle with incenter I and circumcircle ω. The lines AI,
BI, CI intersect ω for the second time at the points D, E, F , respectively. The
lines through I parallel to the sides BC, CA, AB intersect the lines EF , FD, DE

at the points K, L, M , respectively. Prove that the points K, L, M are collinear.
(Cyprus)

3. A jury of 3366 film critics are judging the Oscars. Each critic makes a single vote
for his favorite actor, and a single vote for his favorite actress. It turns out that for
every integer n ∈ {1, 2, . . . , 100} there is an actor or actress who has been voted
for exactly n times. Show that there are two critics who voted for the same actor
and for the same actress. (Cyprus)

4. Prove that among any 20 consecutive positive integers there exists an integer d

such that for each positive integer n we have the inequality

n
√
d ·

{

n
√
d
}

>
5

2

where {x} denotes the fractional part of the real number x. The fractional part of
a real number x is x minus the greatest integer less than or equal to x. (Serbia)

Time allowed: 270 minutes.
Each problem is worth 10 points.
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SOLUTIONS

1. Setting x = ab2, y = bc2 and z = ca2 the given inequality immediately reduces to
Schur’s inequality :

x3 + y3 + z3 + 3xyz > xy2 + yz2 + zx2 + x2y + y2z + z2x.

2. Assuming the arrangement D−E−M , we have ∢EIM = ∢EBA = ∢EDI, so the
line IM is tangent to the circle DEI and MI2 = MD ·ME. Thus M lies on the
radical axis s of the circle ω and the de-
generate circle I. Similarly, points K

and L also lie on s.

Second solution. Points K ′ = BC ∩EF ,
L′ = CA ∩ FD and M ′ = AB ∩DE are
collinear by Desargues’ theorem, so we
have EK′

K′F
· FL′

L′D
· DM ′

M ′E
= −1 in oriented

segments. Since EK′

K′F
= EK

KF
·EK′

EK
· KF
K′F

=

A

B

CD

E

F

I

K L M

EK
KF

· BE
IE

· IF
CF

, substituting this equality and the corresponding ones for L′ and M ′

in the previous relation gives us EK
KF

· FL
LD

· DM
ME

= −1. Thus the problem statement
follows by Menelaus’ theorem.

Remark. Both solutions still work if I is an arbitrary point in the plane of △ABC.

3. Assume the contrary. For each i = 1, . . . , 100 choose a candidate Ai who was voted
for exactly i times.

The number of judges who gave both their votes for candidates in the set A =
{A34, A35, . . . , A100} does not exceed the number of pairs actor-actress in A, and
the number of such pairs is at most 33 · 34 = 1122.

On the other hand, of the 2 · 3366 = 6732 votes, exactly 34+35+ · · ·+100 = 4489
were given to the candidates in A. Therefore at most 6732− 4489 = 2243 judges
could have given a vote to a candidate not in A.

Thus, there were at most 1122 + 2243 = 3365 judges, a contradiction.

4. Denoting m =
[

n
√
d
]

we have

n
√
d
{

n
√
d
}

= n
√
d
(

n
√
d−m

)

= n
√
d·dn

2 −m2

n
√
d+m

> n
√
d·dn

2 −m2

2n
√
d

=
dn2 −m2

2
.

Thus it suffices to choose d so that dn2 −m2 6∈ {1, 2, 3, 4} holds for all m,n ∈ N.
This can be done by taking d = 20k+15 = 5(4k+ 3) for k ∈ N0. Indeed, numbers
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m2 + 2 and m2 + 3 are not divisible by 5, whereas m2 + 1 and m2 + 4 have no
divisors of the form 4k + 3; hence, none of the numbers m2 + 1, m2 + 2, m2 + 3,
m2 + 4 is a multiple of d.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::



The SMO was sponsored by



Mathematical Competitions in Serbia
http://srb.imomath.com/

::::::::::::
Mathematical Society of Serbia

http://www.dms.rs/

The IMO Compendium - 2nd Edition: 1959-2009
Until the first edition of this book appearing in 2006, it has
been almost impossible to obtain a complete collection of the
problems proposed at the IMO in book form. ”The IMO Com-
pendium” is the result of a collaboration between four former
IMO participants from Yugoslavia, now Serbia, to rescue these
problems from old and scattered manuscripts, and produce the
ultimate source of IMO practice problems. This book attempts
to gather all the problems and solutions appearing on the IMO
through 2009. This second edition contains 143 new problems,
picking up where the 1959-2004 edition has left off, accounting
for 2043 problems in total.

Publisher: Springer (2011); Hardcover, 823 pages; Language: English;

ISBN: 1441998535

Visit http://www.imomath.com/ for more information.
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