International Mathematical

ARHIMEDE

Contest - 7th Edition

Bucharest - 24th-29th June 2013

Problems

 $oldsymbol{1}$ Show that in any set of three distinct integers there are two of them say a and b such that the number $a^5b^3-a^3b^5$

is a multiple of 10.

2 For all positive integer n we consider the number $a_n = 4^{6^n} + 1943$. Prove that a_n is divisible by 2013 for all $n \ge 1$, and find all values of n for which $a_n - 207$ is the cube of a positive integer.

3 Let ABC be a triangle with $\angle ABC = 120^{\circ}$ and triangle bisectors $(AA_1), (BB_1), (CC_1)$, respectively. $B_1F \perp A_1C_1$, where $F \in (A_1C_1)$. Let R, I and S be the centers of circles which are inscribed in triangles $C_1B_1F, C_1B_1A_1, A_1B_1F$, and $B_1S \cap A_1C_1 = \{Q\}$. Show that R, I, S, Q are on the same circle.

4 Let p,n be positive integers such that p is prime and p < n. If p divides n+1 and $\left(\left[\frac{n}{p}\right],(p-1)!\right)=1$, then prove that $p\cdot\left[\frac{n}{p}\right]^2$ divides $\binom{n}{p}-\left[\frac{n}{p}\right]$. (Here [x] represents the integer part of the real number x.)

5 Let Γ be the circumcircle of a triangle ABC and let E and F be the intersections of the bisectors of $\angle ABC$ and $\angle ACB$ with Γ . If EF is tangent to the incircle γ of $\triangle ABC$, then find the value of $\angle BAC$.

6 Let p be an odd positive integer. Find all values of the natural numbers $n \geq 2$ for which holds

$$\sum_{i=1}^n \prod_{j\neq i} (x_i - x_j)^p \ge 0,$$

where x_1, x_2, \ldots, x_n are any real numbers.

Solutions

 $oldsymbol{1}$ Show that in any set of three distinct integers there are two of them say a and b such that the number

$$a^5b^3 - a^3b^5$$

is a multiple of 10.

(José Luis Díaz-Barrero, Spain)

Solution. First we observe that the statement holds if the set includes a=0 or b=0. Let us denote by $N(a,b)=a^5b^3-a^3b^5$. Since N(-a,-b)=N(a,b) and N(-a,b)=N(a,-b)=-N(a,b), then WLOG we may assume that the 3 distinct integers are all positive. Now, it easy to check that $a^5b^3-a^3b^5$ is even and it is suffice to prove that N(a,b) is a multiple of 5, which will certainly occur if either a or b is multiple of 5. Since

$$N(a,b) = a^3b^3(a^2 - b^2) = a^3b^3(a - b)(a + b),$$

what we have to prove is the following claim:

Given any 3 positive integers none of which is multiple of 5, the sum or difference of 2 of them is a multiple of 5.

Indeed, the last digit of any number not multiple of 5 lie in the set $\{1,2,3,4,6,7,8,9\}$. Let $A=\{1,4,6,9\}$ and $B=\{2,3,7,8\}$ (pigeonholes). Of the 3 integers (pigeons) in our set, by the PHP, at least 2 belong to A or at least 2 belong to B, In any case, either their sum or their difference is a multiple of 5 as can be easily check, and we are done.

2 For all positive integer n we consider the number $a_n = 4^{6^n} + 1943$. Prove that a_n is divisible by 2013 for all $n \ge 1$, and find all values of n for which $a_n - 207$ is the cube of a positive integer.

(Nicolae Papacu, Romania)

Solution. To prove the first part, we begin observing that $2013 = 3 \cdot 11 \cdot 61 = 33 \cdot 61$. Since $9^5 = 81 \cdot 81 \cdot 9 = (61 + 20) (61 + 20) \cdot 9$ and $20 \cdot 20 \cdot 9 = 3600 = 61 \cdot 59 + 1$, then we have $9^5 \equiv 1 \pmod{61}$. Since $4^6 = 4096 = 61 \cdot 67 + 9 \equiv 9 \pmod{61}$ and $6^{n-1} = (5+1)^{n-1} = 5m+1$, $m \in \mathbb{N}$, then for all $n \geq 1$, holds

$$4^{6^n} = (4^6)^{6^{n-1}} = (4^6)^{5m+1} \equiv 9^{5m} \cdot 9 \pmod{61} \equiv 9 \pmod{61}$$

So, $a_n = 4^{6^n} + 1943 \equiv 1952 \pmod{61} \equiv 0 \pmod{61}$ and $61|a_n$, for all $n \ge 1$.

On the other hand, $a_n = 4^{6^n} - 4 + 1947 = 4 \left(4^{6^n-1} - 1\right) + 33 \cdot 59$. Since $6^n - 1 \equiv 0 \pmod{5}$, then $6^n - 1 = 5p$, $p \in \mathbb{N}$. Then, we have

$$4^{6^{n}-1} - 1 = 4^{5p} - 1 = (4^{5})^{p} - 1 = 1024^{p} - 1$$
$$= (1024 - 1)(1024^{p-1} + \dots + 1) = 1023 \cdot q = 33 \cdot 31 \cdot q$$

and $33|a_n$ the jointly with the preceding yields $2013=33\cdot 61|a_n$ for all $n\geq 1$. To solve the second part of the statement, we observe that $a_n - 207 = 4^{6^n} + 1736$ is an even integer, say 2x with $x \in \mathbb{N}$. From $4^{6^n} + 1736 = (2x)^3$ follows $2^{2 \cdot 6^n - 3} + 217 = x^3$ or $2^{3(4\cdot6^{n-1}-1)}+217=x^3$. Putting $2^{4\cdot6^{n-1}-1}=y$ in the last equation yields

$$+217 = x^3$$
. Putting $2^{4^{10}} - y^{10} = 217 = 7 \cdot 31$
 $x^3 - y^3 = 217 \Leftrightarrow (x - y)(x^2 + xy + y^2) = 217 = 7 \cdot 31$

Since $x - y < x^2 + xy + y^2$, then we have two possibilities

$$x^{2} + xy + y^{2}$$
, then we have
$$\begin{cases}
 x - y = 1, \\
 x^{2} + xy + y^{2} = 217.
\end{cases}$$
or
$$\begin{cases}
 x - y = 7, \\
 x^{2} + xy + y^{2} = 31.
\end{cases}$$

The solutions of the first system are (9,8),(-8,-9) and the solutions of the second one (6,-1) and (1,-6). Finally, since $y=2^{4\cdot 6^{n-1}-1}$ is a positive integer, then $y=2^{4\cdot 6^{n-1}-1}$ $2^{4 \cdot 6^{n-1} - 1} = 8 = 2^3$ from which follows n = 1, and we are done.

3 Let ABC be a triangle with $\angle ABC=120^\circ$ and triangle bisectors $(AA_1),(BB_1),$ (CC_1) , respectively. $B_1F\perp A_1C_1$, where $F\in (A_1C_1)$. Let R,I and S be the centers of circles which are inscribed in triangles $C_1B_1F,C_1B_1A_1,A_1B_1F,$ and $B_1S\cap A_1C_1=$ $\{Q\}$. Show that R, I, S, Q are on the same circle.

(Radu Bairac, Republica Moldova)

Solution. First, we will show that $\angle C_1B_1A_1=90^\circ$. Lek $K\in BC$ so that $B\in (KA_1)$, then $\angle ABK = 60^{\circ}$. Point C_1 is on the bisector of $\angle ACB$ and this implies that $d(C_1,BC)=d(C_1,AC)$ or $C_1F_1=C_1F_3$, where F_1 is the projection of C_1 on BC and F_3 is the projection of C_1 on AC. Segment BA is the bisector of $\angle KBB_1$ implies that $d(C_1, KB) = d(C_1, BB_1)$ or $C_1F_1 = C_1F_2$, where F_2 is the projection of C_1 on BB_1 . So, $C_1F_2=C_1F_3$ and C_1B_1 is the bisector of $\angle BB_1A$. Let us denote $\angle BB_1C_1=lpha$. Likewise, we prove that B_1A_1 is the bisector of $\angle BB_1C$. Let $\angle BB_1A_1=\angle CB_1A_1=$ β . Then, from $\angle AB_1C = 180^{\circ}$ we have $2\alpha + 2\beta = 180^{\circ}$ and $\alpha + \beta = 90^{\circ}$.

Let r_1 be the radius of inscribed circle to $\triangle A_1B_1C_1$, r_2 the radius of inscribed circle to $\triangle C_1B_1F$, and r_3 be the radius of inscribed circle to $\triangle A_1B_1F$, respectively. Considering the properties of right triangles, we have

$$\triangle C_1 F B_1 \sim \triangle C_1 B_1 A_1 \Rightarrow \frac{r_2}{r_1} = \frac{B_1 C_1}{C_1 A_1} = \cos C_1$$

from which follows $r_2 = r_1 \cos C_1 = r_1 \sin A_1$. Likewise,

$$rac{r_3}{r_1} = rac{A_1 B_1}{C_1 A_1} = \cos A_1 \Rightarrow r_3 = r_1 \, \cos A_1 = r_1 \, \sin C_1$$

Now, we will see that $I_1R \parallel A_1B_1$ and $I_1S \parallel C_1B_1$, where I_1 is the projection of I on C_1A_1 . Let $I_1R_2 \perp C_1B_1$, $R_2 \in (C_1B_1)$ and $I_1R_1 \cap C_1I = \{R^*\}$. On account that $\triangle C_1II_1 \sim \triangle C_1R^+R_2$, then

$$\frac{R^*R_2}{II_1} = \frac{C_1R_2}{C_1I_1} = \cos C_1 \Rightarrow R^*R_2 = r_1\cos C_1 = r_2$$

from which follows $R^*=RI_1R\perp C_1B_1\Rightarrow I_1R\parallel A_1B_1.$ Likewise, we get $I_1S\parallel C_1B_1.$

In triangle I_1RR_1 we have $r_2=I_1R\sin A_1=r_1\cos C_1=r_1\sin A_1$ and $I_1R=r_1$. In triangle I_1SS_1 we have $r_3=I_1S\sin C_1=r_1\cos A_1=r_1\sin C_1$ from which follows $I_1S=r_1$. Finally, we get $I_1R=II_1=I_1S=r_1$. Since $\triangle QSI_1\sim \triangle QB_1C_1$, then

$$\frac{SI_1}{B_1C_1} = \frac{I_1Q}{C_1Q} \Longrightarrow SI_1 = I_1Q$$

on account that $B_1C_1=C_1Q$. Now, we can conclude that points R,I,S, and Q lie on the same circle, and we are done. \Box

4 Let p,n be positive integers such that p is prime and p < n. If p divides n+1 and $\left(\left[\frac{n}{p}\right],(p-1)!\right)=1$, then prove that $p\cdot\left[\frac{n}{p}\right]^2$ divides $\binom{n}{p}-\left[\frac{n}{p}\right]$. (Here [x] represents the integer part of the real number x.)

(Diana Alexandrescu, Romania, and José Luis Díaz-Barrero, Spain)

Solution. Since $p \mid n+1$, then $p \mid n+1-p$. So, there exists $k \in \mathbb{N}$ such that n=kp+p-1 and $\left \lceil \frac{n}{p} \right \rceil = k$. Now, we have

$$\binom{n}{p} - \left[\frac{n}{p}\right] = \binom{kp+p-1}{p} - k$$

$$= \frac{(kp+p-1)(kp+p-2)\dots(kp+1)(kp)}{p!} - k$$

$$= \frac{k(kp+1)(kp+2)\dots(kp+p-1) - k(p-1)!}{(p-1)!}$$

$$= \frac{k(k\cdot p\cdot r + (p-1)!) - k(p-1)!}{(p-1)!}$$

$$= \frac{k^2 \cdot p \cdot r}{(p-1)!} \in \mathbb{N}$$

Since $\left(\left[\frac{n}{p}\right],(p-1)!\right)=1$, then (p-1)! divides r and therefore $\binom{n}{p}-\left[\frac{n}{p}\right]$ is divisible by $p \cdot \left[\frac{n}{p}\right]^2$ as we wanted to prove.

 $oldsymbol{5}$ Let Γ be the circumcircle of a triangle ABC and let E and F be the intersections of the bisectors of $\angle ABC$ and $\angle ACB$ with Γ . If EF is tangent to the incircle γ of $\triangle ABC$, then find the value of $\angle BAC$. (Iván Gueffner, Spain)

Solution. Let us denote by I the incenter of $\triangle ABC$. From the figure immediately

follows $\angle IBC = \angle IFE$ and $\angle ICB = \angle IEF$. So, $\triangle IBC \simeq \triangle IFE$. Since both have the same height (the radii of the incircle) because BC and EF are both tangent to γ , then $\triangle IBC = \triangle IFE$. Therefore, IB = IF. Now, if we denote $\angle ABC = 2\alpha$ and $\angle ACB = 2\beta$, then $\angle BIF = \alpha + \beta$. Now, from isosceles $\triangle IFB$ follows

$$\angle IBF = \angle IFB = \angle CFB = \angle BAC = 180^{\circ} - 2(\alpha + \beta)$$

Adding up the angles of $\triangle IFB$ yields

$$(\alpha + \beta) + 180^{\circ} - 2(\alpha + \beta) + 180^{\circ} - 2(\alpha + \beta) = 180^{\circ}$$

from which follows $\alpha + \beta = 60^{\circ}$ and $\angle BAC = 60^{\circ}$.

6 Let p be an odd positive integer. Find all values of the natural numbers $n \geq 2$ for which holds

$$\sum_{i=1}^n \prod_{j\neq i} (x_i - x_j)^p \geq 0,$$

where x_1, x_2, \ldots, x_n are any real numbers.

(Sorin Radulescu, Romania)

Solution. Denote by

$$f_n(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \prod_{j \neq i} (x_i - x_j)^p = (x_1 - x_2)^p (x_1 - x_3)^p \dots (x_1 - x_n)^p$$

 $+(x_2-x_1)^p(x_2-x_3)^p\dots(x_2-x_n)^p+\dots+(x_n-x_1)^p(x_n-x_2)^p\dots(x_n-x_{n-1})^p$

Since $f_2(x_1,x_2)=(x_1-x_2)^p+(x_2-x_1)^p=0$ for all $x_1,x_2\in\mathbb{R}$, then for n=2 the statement holds and equality occurs. Let $n\geq 3$. Then

$$f_n(x_1, x_2, a, a, \dots, a) = (x_1 - x_2)^p (x_1 - a)^{p(n-2)} + (x_2 - x_1)^p (x_2 - a)^{p(n-2)}$$
$$= (x_1 - x_2)^p \left[(x_1 - a)^{p(n-2)} - (x_2 - a)^{p(n-2)} \right]$$

for all $x_1, x_2 \in \mathbb{R}$. Observe that $f_n(x_1, x_2, a, a, \ldots, a) \geq 0$ when the function $u_a(x) = (x-a)^{p(n-2)}$ be an increasing function. It occurs when p(n-2) is an odd number from which follows that n must be an odd number too.

Now we consider the case when $n \geq 7$ is an odd number. Then, should be

$$f_n(x_1, a, a, a, b, \dots, b) = (x_1 - a)^{3p}(x_1 - b)^{p(n-4)} \ge 0,$$

for all $x_1, a, b \in \mathbb{R}$. But, the preceding inequality does not hold when $x_1 = \frac{a+b}{2}$ and $a \neq b$. So, we have to analyze the cases n=3 and n=5.

- (1) For n=3 we may suppose WLOG that $x_1\geq x_2\geq x_3$. Let $g(x_1,x_2,x_3)=(x_3-x_1)^p(x_3-x_2)^p$ and $u(x)=(x-x_3)^p$, $x\geq x_3$. Then, we have
- (i) u is increasing.
- (ii) $g(x_1, x_2, x_3) \geq 0$.

On account of (i) and (ii), we have that

$$f(x_1, x_2, x_3) = (x_1 - x_2)^p [(x_1 - x_3)^p - (x_2 - x_3)^p] + (x_3 - x_1)^p (x_3 - x_2)^p$$
$$= (x_1 - x_2)^p [u(x_1) - u(x_2)] + g(x_1, x_2, x_3) \ge 0$$

and the statement holds for n = 3.

(2) For n=5 we also suppose that $x_1\geq x_2\geq x_3\geq x_4\geq x_5$. Let

$$h(x_1, x_2, x_3, x_4, x_5) = (x_3 - x_1)^p (x_3 - x_2)^p (x_3 - x_4)^p (x_3 - x_5)^p$$

and let $v(x) = (x-x_3)^p(x-x_4)^p(x-x_5)^p$, $x \ge x_3$ and $w(x) = (x-x_1)^p(x-x_2)^p(x-x_3)^p$, $x \le x_3$. Observe that $h(x_1, x_2, x_3, x_4, x_5) \ge 0$ and v and w are increasing. Since

$$f(x_1, x_2, x_3, x_4, x_5) = (x_1 - x_2)^p [v(x_1) - v(x_2)]$$

+ $(x_4 - x_5)^p [w(x_4) - w(x_5)] + h(x_1, x_2, x_3, x_4, x_5),$

then $f(x_1, x_2, x_3, x_4, x_5) \ge 0$. We conclude that the natural numbers for which the statement follows are n = 2, n = 3 and n = 5, respectively.