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Problems

1 Show that in any set of three distinct integers there are o of them say a and b

such that the number
abb® — a®b®
is a multiple of 10.

2 For all positive integer n we consider the number a, = 4%™ 4 1943. Prove that an IS
divisible by 2013 for alln > 1, and find all values of n for which a, — 207 is the cube

of a positive integer.

3 Lot ABC be a triangle with ZABC = 120° and triangle bisectors (AA4), (BBa),
)_,_ ‘rpetly.. ByF L A,C,, where F € (A1C4). Let R, I and S be the centers

20 &

B Let T be the circumcircle of a triangle ABC and let E and F be the intersections of
the bisectors of ZABC and /ACB withT. If EF is tangent to the incircley of AABC
then find the value of ZBAC. ]

6 Let p be an odd positive integer. Find all values of the natural numbers n > 2 for
which holds 5

n

> [I(=:i—=5)P 20,

i=1j#i

where xy, T2, . . ., Ty are any real numbers.




Solutions

1 Show that in any set of three distinct integers there are two of them say a and b
such that the number
a’b® — a3pd

is a multiple of 10.

(José Luis Diaz-Barrero, Spain)

Solution. First we observe that the statement holds if the set includes a = 0 or
b = 0. Let us denote by N(a,b) = a®b® — a®b®. Since N(—a,—b) = N(a,b) and
N(—a,b) = N(a,—b) = —N(a,b), then WLOG we may assume that the 3 distinct
integers are all positive. Now, it easy to check that a®b® — a3b® is even and it is suffice
to prove that N(a,b) is a multiple of 5, which will certainly occur if either a or b is
multiple of 5. Since

N(a,b) = a®b3(a® — b?) = a®b®(a — b)(a + b),
what we have to prove is the following claim:

Given any 3 positive integers none of which is multiple of 5, the sum or difference of 2
of them is a multiple of 5.

Indeed, the last digit of any number not multiple of 5 lie in the set {1, 2, 3,4,6,7, 8, 9}.
Let A = {1,4,6,9} and B = {2,3,7,8} (pigeonholes). Of the 3 integers (pigeons) in
our set, by the PHP, at least 2 belong to A or at least 2 belong to B, In any case,
either their sum or their difference is a multiple of 5 as can be easily check, and we
are done.

2 For all positive integer n we consider the number a,, = 4%" + 1943. Prove that a,, is t?’ |
divisible by 2013 for all n > 1, and find all values of n_for which a,, — 207 is the cube o
of a positive integer. -

(Nicolae Papacu, Romania)

Solution. To prove the first part, we begin observing that 2013 = 3 -11 - 61 = 33 - 61.

Since 95 = 81 - 81 : 9 = (61 + 20) (61 + 20) -9 and 20-20-9 = 3600 = 61 -59 + 1, ;
then we have 9° = 1 (mod 61). Since 4° = 4096 = 61 - 67 + 9 = 9 (mod 61) and §
6" 1=(5+1)"1=5m+1,meN,thenforalln >1, holds

4" = (49" =(4%°"""' =9°".9 (mod61)=9 (mod 61)

So. a, = 4%" + 1943 = 1952 (mod 61) = 0 (mod 61) and 61|a,, for all n > 1.

On the other hand, a, = 45" — 441947 =4 (4" ~1 — 1) 4+ 33-59. Since 6" —1 =0 :
(mod 5), then 6™ — 1 = 5p, p € N. Then, we have j

4871 _1=4%%—1=(4%)" -1=1024" — 1

= (1024 — 1)(102477' +...+1) =1023-¢=33-81-¢
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Sincex —y <z*+ Y+ y?2, then we have two po
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Jutions of the second

The solutions of the first system are (9,8), (—-8,;?) and the s.%cz1 Gl
one (6,—1) and (1, —6). Finally, since y = 046”711 jg a positive :
24-6"~*~1 _ g — 28 from which follows n =1, and we are done. 4

3 1ot ABC be a triangle with ZABC = 120° and triangle bisectors (AA1)s (an;zs’
(CC,), respectively. BiF L A1Cy, where F' € (A1C1). Let R, I and S be thereC rs
of circles which are inscribed in triangles Cy B1 F, C1B1 A1, A,B F,and B1SNA1C1 =
{Q}. Show that R, I, S, Q are on the same circle.

(Radu Bairac, Republica Moldova)

Solution. First, we will show that ZCyB;A; = 90°. Lek K € BC so that B € (KA1),

then ZLABK = 60°. Point C; is on the bisector of ZACB and this implies that

d(C;, BC) = d(C;, AC) or C1 F1 = C1Fs, where F, is the projection of C; on BC and
F3 is the projection of C; on AC. Segment BA is the bisector of /K BB, implies that
d(C:, KB) = d(C;, BB,) or C; F; = C1F3, where F; is the projection of Cy on BB;.
So, C; F, = C, Fs and C; B, is the bisector of ZBB; A. Let us denote £BB,C, = a.
' : hat B; A, is the bisector of ZBB;C. Let LBB, 4 3

b e

Let r; be the radius of inscribed circle to AA;B;C1, r; the radius of insc

L) ribed cir-
cle to AC, By F, and r3 be the radius of inscribed circle to AA,B; F, respectively
Considering the properties of right triangles, we have '

re  BC
ACiFB; ~ AC1B1A; = E = CiA, = cos C
from which follows 2 = r; cos C; = r; sin A,. Likewise,
rg  A1B
;—1- = CiA, =cos Ay = r3 =71 cos A; = r; sinC;
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Now, we will see that I R || A1 B; ¢ '

‘ z | 4187 and IS || €y B;, where I, is the
on _'(..Al. Let LR, | C1B,, R € (CiBy) and LR, NC T = i{J’{'} ‘()
AC I ~ AC;RTR,, then .

projection of J
N account that

R*R; CiR,
T R S D

= cosC; = R*"R; = r, cos Cy =1,

{C]:Og \R’hi(?]] {blI()ws R* — RIJR = 5 Cvl BI = I|R || AIB]- [,ik(\“’ri:.-,[_.\. we get ILH "
#1121 - : ;

In triangle Iy RR; we have r, = LR sin A; = r; cosCy =713 sin4; and LR = r,. In 4
triangle I, SS; we have r3 = I, S sinC; = r; cos A; = r; sin C; from which follows
I;S = ry. Finally, we get L1 R = II; = I, S = r,. Since AQSI, ~ AQB;C,, then

SL  LQ

o —85hLH=1;Q
B:C: GiQ
on account that B;C; = C;Q. Now, we can conclude that points R, I, S, and Q lie f
on the same circle, and we are done. :
O

4L et p, n be positive integers such that p is prime and p < m. If p divides n 4+ 1 and

1] \ T2 2 e [T “'I .| | e ;

|—|,(p—1)!) = 1, then prove that p- | —| divides { — | —| . (Here [&] represents

; 2, P \D/ s i D]

o J F4 A
the integer part of the real number x.)

(Diana Alexandrescu, Romania, and José Luis Diaz-Barrero, Spain)

Solution. Since p|n + 1, then p|n + 1 — p. So, there exists k € N such that n =

kp+p—1and {E} = k. Now, we have

L

=Bl T e e

(kp+p—1)(kp+p—2)...(kp+1)(kp)

= k
= -
_ k(kp+1)(kp+2)...(kp+p—1) —k(p—1)!
= (p—1)!

o k(k-p-r+ (p—1)!) — k(p — 1)!

% (p—1)!

= k-——mg'p'reN

(p—1)!
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_ 1)1 divides 7 and therefo® {p) T [ 25

£ and F be the intersections of

the circumcirc triangle AB and let BC
2 le 4t the incircle v of AABC,

ge[ﬁifsgc?:rs of ZABC anltei 2{40’3 withT. IfBF 15 tangent to

then find the value of ZBAC. . . :

From the figure immediately

Solution. Let us denote by I the incenter of AABC.

ng up the angles of ATFB yiclds
(e + B) + 180° — 2(a + 3) + 180° — 2(ax + B) = 180°
from which follows « + 8 = 60° and /BAC = 60°. O

6Letpbeanoddpositivemtegei: Find all values of the natural numbers n > 2 for

which holds 2
> I@—=2)? 20,
i=1 j#i
where 1, T2, - . . , &, are any real numbers.

(Sorin Radulescu, Romania)

Solution. Denote by

fa(@n 2o, zn) = ) [J@i— 25)” = (21 — 22)P(x1 — 23)P ... (21 — )P
i=1j%i




+(z2 — 21)P (22 — x3)P... (T2 —zn)P +... 4+ (2 — Z1)P(zn — xz2)P...(xp — Tnii)®

Since fa(x1,®2) = (1 — 23)P + (2 — @1)? = 0 for all z;,2, € R, then for n = 2 the
statement holds and equality occurs. Let n > 3. Then
(3'1 = &2)”(21 — ﬂ)p(ﬂ—g) - (Eg — Z])p(&'g = a)p(n—-?)

fn(®1,22,0,a,...,a)
= (x1 —23)? [(m —a)P"=2) _ (g, — a)"(“"z)]

for all z;,x, € R. Observe that fn(@1,22,0,a,...,a) > 0 when the function u,(z) =
(xz — a)P("=2) pe an Increasing function. It occurs when p(n — 2) is an odd number

from which follows that n must be an odd number too.
Now we consider the case when n > 7 is an odd number. Then, should be
fn(21,a,a, ayb,...,b) = (1 — Q)SP(EI = b)p(n_‘l) >0,

b
for all z,, a,b € R. But, the preceding inequality does not hold when z; = 9—:— and

a#b.So.wehavetoanalyzethecasesa:3andn=5.

(1) For n = 3 we may suppose WLOG that z; > x5 > zj. Let g(21, z2,®3) = (x5 —
x1)P(x3 — @2)? and u(z) = (xz — 23)?, ¢ > 3. Then, we have : ey Bk

. =(z;— :I.':gp [u(:n) = 0(32)]9(31 21 33) (

and the statement holds for n = 3.

(2) For n = 5 we also suppose that Ty > 23 > T3 > x4 > ws. Let
h(z1, 2, x3, 24, T5) = (23 — 2, )P(x3 — z3)P (25 — z4)P (23 — x5)P

and let v(z) = (z—23)P(x—24)P(x—x5)P, > 25 and w(z) = (T —21)P(z—23)P(x —
z3)P, x < z3. Observe that h(zq, z2, 3, 24, x5) > 0and v and w are increasing. Since

F (@1, T2, 23, 24, @5) = (21 — #2)P[0(21) — v(x2)]

+(z4 — mﬁ)p[w(m‘ﬁ) —w(zs)] + h(zy, z2, T3, Tq,Ts),

then f(z1, 22, @3, 4, 5) > 0. We conclude that the natural numbers for which the

statement follows are n = 2,n = 3 and n = 5, respectively.
O
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