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SHORT HISTORY AND SYSTEM

Mathematical competitions in Serbia have been held since 1958. In the first
years only republic competitions within the former Yugoslavia, which Serbia was a
part of, were held. The first Federal Mathematical Competition in Yugoslavia was
held in Belgrade in 1960, and since then it was held regularly every year, skipping
only 1999 for a non-mathematical reason. The system has undergone relatively few
changes. The earliest Federal Competitions were organized for 3rd and 4th grades
of high school only; 2nd grade was added in 1970, and 1st grade in 1974. Since
1982, 3rd and 4th grades compose a single category. After the breakdown of the
old Yugoslavia in 1991, the entire system was continued in the newly formed FR
Yugoslavia, later renamed Serbia and Montenegro. The separation of Montenegro
finally made the federal competition senseless as such. Thus, starting with 2007,
the federal competition and team selection exam are replaced by a two-day Serbian
Mathematical Olympiad.

Today a mathematical competition season in Serbia consists of four rounds of
increasing difficulty:

• Municipal round, held in early February. The contest consists of 5 problems,
each 20 points worth, to be solved in 3 hours. Students who perform well
qualify for the next round (50-60 points are usually enough).

• Regional round, held in late February in the same format as the municipal
round. Each student’s score is added to that from the municipal round.
Although the number of students qualified for the state round is bounded by
regional quotas, a total score of 110-120 should suffice.

• State (republic) round, held in late March in a selected town in the country.
There are roughly 200 to 300 participants. The contest consists of 5 problems
in 4 hours.

• Serbian Mathematical Olympiad (SMO), held in early April in a selected
place in the country. The participants are selected through the state round:
26 from A category (distribution among grades: 3+5+8+10), 3 from B cate-
gory (0+0+1+2), plus those members of the last year’s olympic team who did
not manage to qualify otherwise. Six most successful contestants are invited
to the olympic team.

Since 1998, contests for each grade on the three preliminary rounds are divided
into categories A (specialized schools and classes) and B (others). A student from
category B is normally allowed to work the problems for category A instead. On
the SMO, all participants work on the same problems.
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The Serbian Mathematical Olympiad 2012 for high school students took place
in Belgrade on March 31 and April 1. There were 30 students from Serbia and
8 guest students from Russia and Croatia. The average score on the contest was
12.92 points and all problems were fully solved by the contestants.

The team for the Balkan MO and IMO was to be selected based on the contest,
but one of the students was unable to participate on the IMO. The replacement
was chosen on an additional team selection exam. Thus the team(s) of Serbia for
the 29-th Balkan MO and 53-rd IMO are:

Teodor von Burg Math High School, Belgrade
Rade Špegar Math High School, Belgrade
Dušan Šobot Math High School, Belgrade
Igor Spasojević Math High School, Belgrade
Ivan Tanasijević Math High School, Belgrade
Ivan Damnjanović HS ”Bora Stanković”, Nǐs Balkan MO only
Lazar Radičević Math High School, Belgrade IMO only

In this booklet we present the problems and full solutions of the Serbian Math-
ematical Olympiad with the Additional Team Selection Exam, and the Balkan
Mathematical Olympiad.
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade , 31.03.2012.

First Day

Let P be the point on diagonal BD of a parallelogram ABCD such that ∠PCB =1.
∠ACD. The circumcircle of triangle ABD meets the diagonal AC again at point
E. Prove that ∠AED = ∠PEB. (Marko Djikić)

Find all natural numbers a and b such that2.

a | b2, b | a2 and a+ 1 | b2 + 1. (Dušan Djukić)

In some vertices of a square grid 2012× 2012 there are a fly and k spiders. In each3.
second, the fly moves to a neighboring vertex or waits, followed by each of the k
spiders moving to a neighboring vertex or waiting (there can be more than one
spider in the same vertex). At all times, the fly and the spiders know the positions
of the others.

a) Find the smallest k such that the spiders can catch the fly in a finite time,
no matter the initial positions of the fly and the spiders.

b) Answer the same question for a cube grid 2012× 2012× 2012.

(Two vertices are neighboring if they are on a distance 1. A spider catches the fly
if they are both at the same vertex.) (Nikola Milosavljević)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade, 01.04.2012.

Second Day

4. Find all natural numbers n for which there exists a permutation (p1, p2, . . . , pn) of
numbers (1, 2, . . . , n) such that the sets {pi+i | 1 ≤ i ≤ n} and {pi−i | 1 ≤ i ≤ n}
form complete sets of residues modulo n. (Marko Djikić)

5. Let K be the set of points in the plane with integer coordinates. Does there exist
a bijection f : N → K such that for all a, b, c ∈ N

gcd(a, b, c) > 1 =⇒ f(a), f(b), f(c) are not collinear ?
(Stevan Gajović)

6. A train consists of n > 1 waggons with gold coins. Some coins are genuine and
some are fake, although they all look the same and can only be distinguished by
mass: all genuine coins have the same mass, and so do all fake ones, where the two
masses differ. The mass of a genuine coin is known. Each waggon contains only
genuine coins or only fake ones.

Find the smallest number of measurements on a digital scale by which one can
determine all waggons with fake coins and find the mass of a fake coin.

(It is assumed that from each waggon one can take as many coins as needed.)
(Miloš Milosavljević)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

We shall assume that ∠BAC ≤ 90◦. The other case is analogous. Let the lines1.

DE and BC meet at L. The quadrila-
teral CDPL is circumscribed because
∠PDL = ∠PCL, which gives ∠PLE =
∠PCD = ∠BCA = ∠DAC = ∠DBE
= ∠PBE, so the quadrilateral BPEL is
circumscribed as well. Hence ∠PEB =
∠PLB = ∠PDC = ∠DBA = ∠DEA. A B

CD

P

E

L

Second solution. Let P ′ be the point on diagonal BD such that ∠DEA = ∠PEB.
By the sine theorem, BP

DP
= BP

CP
· CP
DP

= sin∠BCP
sin∠CBD

· sin∠CDB
sin∠PCD

. Analogously, BP ′

DP ′
=

sin∠BEP ′

sin∠EBD
· sin∠EDB

sin∠P ′ED
. Since ∠BCP = ∠EDB, ∠CBD = ∠P ′ED, ∠CDB =

∠BEP ′ and ∠PCD = ∠EBD, we obtain BP
DP

= BP ′

DP ′
, so P ≡ P ′.

Set b2 = ca. The problem conditions become b2 = ca | a4 and a+1 | ca+1, which2.
is equivalent to

c | a3 and a+ 1 | c− 1.

Write c = d(a + 1) + 1, d ∈ N0. Since a3 ≡ −1 (mod a + 1), we have a3

c
≡

−1 (mod a + 1), i.e. a3

c
= e(a + 1) − 1 for some e ∈ N. It follows that a3 =

(d(a + 1) + 1)(e(a + 1) − 1), which after expending and canceling a + 1 yields
a2 − a+ 1 = de(a+ 1) + (e− d). Thus e− d ≡ a2 − a+ 1 ≡ 3 (mod (a+ 1)), so

e− d = k(a+ 1) + 3 and de = a− 2− k (k ∈ Z).

We distinguish the following cases:

(1) k 6∈ {−1, 0}. Then de < |e− d| − 1, implying d = 0. Now c = 1 and b2 = a,
so (a, b) = (t2, t).

(2) k = −1. Then a = d+ 1. Now we get c = a2 and b2 = a3, so (a, b) = (t2, t3).

(3) k = 0. We get a = d2 + 3d + 2. Now c = d(a + 1) + 1 = (d + 1)3 and
b2 = ca = (d + 1)4(d + 2). It follows that d + 2 = t2 for some t ∈ N, which
gives us (a, b) =

(

t2(t2 − 1), t(t2 − 1)2
)

, t ≥ 2.

Thus the possible pairs (a, b) are (t2, t), (t2, t3) and
(

t2(t2 − 1), t(t2 − 1)2
)

, t ∈ N.

One spider cannot catch the fly if the fly waits for the spider to arrive to a neighbor-3.
ing cell, and then repeatedly moves onto a cell diagonally adjacent to the spider’s.
We shall show that the two spiders are enough in both (a) and (b) - denote them
by P and Q, the fly by M , and x- and y-coordinates of point A by Ax and Ay.
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(a) Set a cartesian coordinate system with the origin at the lower-left corner.
First, moving along the x-axis, P can achieve that Px = Mx in finitely many steps.
Analogously, Q achieves that Qy = My. From this moment on, the spiders move
in the following way: whenever the fly changes its x-coordinate, P does the same
to keep Px = Mx, otherwise it moves one step along the y-axis towards the fly;
Q moves analogously. In this way, the quantity |Py − My| + |Qx − Mx| either
decreases or does not change, and it can stay unchanged through at most 2 · 2010
moves (when the fly flees). Hence after finitely many moves at least one summand
will be zero, i.e. the fly will be caught.

(b) Disregarding the z-axis, by the part (a), one of the spiders, say P , can achieve
that Px = Mx and Py = My. In the next phase, whenever the fly moves along
the z-axis, spider P moves towards it, otherwise P moves so as to stay straight
under the fly. Clearly, in this manner the fly can make only finitely moves along
the z-axis or stay still, before it would be caught by P . Hence, from some moment
on, the fly must move within the same xy-plane, without staying still.
Next, spider Q reaches the xy-plane of the fly. Also, staying still if needed, Q
achieves that f = |Qx−Mx|+ |Qy−My| be even. In every subsequent move, spider
Q moves towards the fly along the x-axis if |Qx −Mx| > |Qy −My|, otherwise it
moves along the y-axis. After every move, the quantity f does not increase or
change parity, and only finitely many times can it stay unchanged. Therefore, in
some moment we shall have f = 0 and the fly will be caught.

4. Suppose that such a permutation exists. Since {pi + i | 1 ≤ i ≤ n} is a complete
residue system modulo n, we have

∑n

k=1 k ≡ ∑n

i=1(pi + i) ≡ ∑n

i=1 i +
∑n

i=1 pi ≡
2
∑n

k=1 k (mod n), hence
∑n

k=1 k = n(n+1)
2 ≡ 0 (mod n), which gives us 2 ∤ n.

Moreover, it holds that 2
∑n

k=1 k
2 ≡ ∑n

k=1((pi+i)2+(pi−i)2) ≡ ∑n

k=1(2p
2
i+2i2) ≡

4
∑n

k=1 k
2, so 2

∑n

k=1 k
2 = n(n+1)(2n+1)

3 ≡ 0 (mod n), implying 3 ∤ n. Therefore,
we must have (n, 6) = 1.

On the other hand, if (n, 6) = 1 and pi ≡ 2i (mod n), pi ∈ {1, . . . , n}, then
(p1, p2, . . . , pn) is permutation of {1, . . . , n} and satisfies the conditions, because
{pi + i | 1 ≤ i ≤ n} ≡ {3i | 1 ≤ i ≤ n} and {pi − i | 1 ≤ i ≤ n} ≡ {i | 1 ≤ i ≤ n}
(mod n) are complete residue systems modulo n.

5. Arrange all vertices of the grid in a sequence A1, A2, . . . . We shall construct a
desired bijection inductively.
Set f(1) = A1. Suppose that f(1), . . . , f(n − 1) have been chosen, and set f(n)
to be the point Am with the smallest m such that, for any i, j ≤ n, (i, j, n) > 1,
Am does not lie on line f(i)f(j). There are finitely many lines f(i)f(j), so there is
indeed an integer point not lying on any. Observe that, for a prime p, f(p) becomes
the unchosen point with the smallest index, which guarantees that every integer
point will occur as f(n) for some n.
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The bijection f satisfies all problem conditions.

Second solution. If n is composite, set f(n) to be the point (n, n2). For any prime
p, let f(p) be any admitted point on the minimal distance from the origin (0, 0).
We shall show that f is a well-defined bijection satisfying the conditions.
For each p there is an admitted point - e.g. any unchosen point on the parabola
y = x2. Indeed, an arbitrary line through this point meets the parabola in at most
one other point, so it contains the image of at most one composite number.
On the other hand, for any arbitrary point A ∈ K\{(n, n2) | n is composite} there
is a prime p for which A is an admitted point. Namely, there are only finitely many
lines through A containing two integer points on y = x2 (different from A); denote
these lines by p1, . . . , pk and the intersections of pi with the parabola y = x2 by
Ai, Bi. It suffices to take p not dividing (f−1(Ai), f

−1(Bi)) for any i.

6. We show that the smallest number of measurements is 2. Denote the masses of a
genuine and fake coin by x and y respectively, and let ai = 1 if the i-th waggon
contains genuine coins, and ai = 0 otherwise.

In the first measurement, take one coin from each waggon; let m1 be the result.
Then a1+a2+ · · ·+an = nx−m1

x−y
. We assume that m1 6= nx, for there would be no

fake coins otherwise. In the second measurement, for a suitable q ∈ N, take qi−1

coins from the i-th waggon; letm2 be the result. We have a1+qa2+· · ·+qn−1an−1 =
(1+q+···+qn−1)x−m2

x−y
. This yields

f(a1, a2, . . . , an) =
a1 + qa2 + · · ·+ qn−1an−1

a1 + a2 + · · ·+ an
=

(1 + q + · · ·+ qn−1)x−m2

nx−m1
.

If we can choose q ∈ N such that the function f : {0, 1}n \ {(0, 0, ..., 0)} → R is
injective, this will mean that the value of f will uniquely determine a1, . . . , an, i.e.
the waggons with fake coins, and finally y = x− nx−m1

a1+a2+···+an

.

For fixed a = (a1, a2, ..., an) and a = (b1, b2, ..., bn), the equality f(a) = f(b) is
equivalent to Pa,b(q) = (anb−bna)q

n−1+ · · ·+(a2b−b2a)q+(a1b−b1a) = 0, where
a = a1+a2+ ...+an 6= 0 6= b1+ b2+ ...bn = b. Therefore, if f is not injective, then
q is a zero of the polynomial P (q) =

∏

a,b Pa,b(q). Since the polynomials Pa,b are
nonzero, there are only finitely many numbers q with P (q) = 0, so there exists q
for which f is injective, proving that two measurements are enough.

One measurement is not enough. Taking ki coins from the i-th waggon yields the
equation k1a1+ · · ·+knan = kx−m

x−y
(where k = k1+ · · ·+kn) which does not have a

unique solution: for instance, both (1, 0, . . . , 0, x− kx−m
k1

) and (0, 0, . . . , 1, x− kx−m
kn

)
are possible solutions for (a1, a2, . . . , an, y).

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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The 29-th Balkan Mathematical Olympiad was held from April 26 to May 2 in
Antalya in Turkey. The results of Serbian contestants are given in the following
table:

1 2 3 4 Total
Teodor von Burg 10 10 10 10 40 Gold Medal

Dušan Šobot 10 10 10 10 40 Gold Medal
Igor Spasojević 10 10 10 10 40 Gold Medal

Rade Špegar 10 10 10 8 38 Silver Medal
Ivan Damnjanović 0 10 10 1 21 Bronze Medal
Ivan Tanasijević 10 10 0 0 20 Bronze Medal

After the contest, 14 contestants (13 officially + 1 unofficially) with 39-40 points
were awarded gold medals, 28 (10+18) with 30-38 points were awarded silver
medals, and 45 (19+26) with 20-28 points were awarded bronze medals.

The unofficial ranking of the teams is given below:

Member Countries Guest Teams
1. Turkey 226 Turkey B 196
2. Romania 213 Italy 172
3. Serbia 199 France 161
4. Bulgaria 162 Kazakhstan 156
5. Greece 154 United Kingdom 139
6. Bosnia-Herzegovina 140 Tajikistan 138
7. Moldova 133 Saudi Arabia 131
8. Macedonia (FYR) 109 Turkmenistan 107
9. Cyprus 79 Azerbaijan 83

10. Albania 41 Indonesia 68
11. Montenegro 16 Afghanistan 0
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BALKAN MATHEMATICAL OLYMPIAD

Antalya, Turkey , 28.04.2012.

1. Let A, B and C be points lying on a circle Γ with center O. Assume that ∠ABC >
90◦. Let D be the point of intersection of the line AB with the line perpendicular
to AC at C. Let ℓ be the line through D which is perpendicular to AO. Let E be
the point of intersection of ℓ with the line AC, and let F be the point of intersection
of Γ with ℓ that lies between D and E. Prove that the circumcircles of triangles
BFE and CFD are tangent at F . (Romania)

2. Prove that
∑

cyc

(x+ y)
√

(z + x)(z + y) ≥ 4(xy + yz + zx)

for all positive real numbers x, y and z.
Remark. The notation above means that the left-hand side is

(x+ y)
√

(z + x)(z + y) + (y + z)
√

(x+ y)(x+ z) + (z + x)
√

(y + z)(y + x).
(Saudi Arabia)

3. Let n be a positive integer. Let Pn = {2n, 2n−1 · 3, 2n−2 · 32, · · · , 3n}. For each
subset X of Pn, we write SX for the sum of all elements of X , with the convention
that S∅ = 0 where ∅ is the empty set. Suppose that y is a real number with
0 ≤ y ≤ 3n+1−2n+1. Prove that there is a subset Y of Pn such that 0 ≤ y−SY < 2n.

(United Kingdom)

4. Find all functions f from the set of positive integers to itself such that the following
conditions both hold:

(i) f(n!) = f(n)! for all positive integers n;

(ii) m− n divides f(m)− f(n) whenever m and n are different positive integers.
(Saudi Arabia)

Time allowed: 270 minutes.
Each problem is worth 10 points.
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SOLUTIONS

1. Let G be the point on Γ diametrically opposite of A. Then E is the orthocenter
of △DAG, so G lies on line BE. Since ∠CDF = ∠GAC = ∠GFC and ∠FBE =
∠FAG = ∠GFE, line FG is the common tangent to circles CFD and BFE at F ,
hence the two circles are tangent.

2. Since (z + x)(z + y) ≥ (z +
√
xy)2 by the Cauchy-Schwarz inequality, we have

∑

cyc(x+ y)
√

(z + x)(z + y) ≥ ∑

cyc[(x+ y)z + (x+ y)
√
xy]

≥ ∑

cyc[(x+ y)z + 2xy] = 4(xy + yz + zx).

3. We use induction on n, The statement is directly verified for n = 1; assume that it
holds for n− 1. Consider y with 0 ≤ y ≤ 3n+1 − 2n+1. We distinguish two cases.

(i) 0 ≤ y ≤ 2 · 3n − 2n+1. By the inductive hypothesis, there is Y ′ ⊂ Pn−1 such
that 0 ≤ y

2
− SY ′ < 2n−1. We can take Y = 2Y ′ (= {2t | t ∈ Y ′}).

(ii) 2 · 3n − 2n+1 ≤ y ≤ 3n+1 − 2n+1. This means that 0 < 3n − 2n+1 ≤ y− 3n ≤
2 · 3n − 2n+1, so by the inductive hypothesis there is Y ′ ⊂ Pn−1 such that
0 ≤ y−3n

2
− SY ′ < 2n−1. We can take Y = 2Y ′ ∪ {3n}.

4. Since f(1) = f(1)! and f(2) = f(2)!, we have f(1), f(2) ∈ {1, 2}.
Suppose that f(3) = 3. If we define n0 = 3 and ni+1 = ni! for i ≥ 0, then
f(ni) = ni by induction. Let m be an arbitrary natural number. Since m − ni

divides f(m)−f(ni), it divides f(m)−m for all i, so f(m)−m has infinitely many
divisors; hence f(m) = m for all m.
Now suppose that f(3) 6= 3. Since 4 = 3! − 2 | f(3)! − f(2) = f(3) − 2, we have
4 ∤ f(3), so f(3) ∈ {1, 2}. Moreover, n! − 3 divides f(n)! − f(3) for all n ≥ 4,
implying 3 ∤ f(n)! and hence f(n) ∈ {1, 2} for all n. Then it is easily seen that f
must be constant.
Thus the solutions are f ≡ 1, f ≡ 2, and (∀x)f(x) = x

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::



11

Additional IMO Team Selection Exam

Belgrade , 16.05.2012.

1. A polynomial P (x) of degree 2012 with real coefficients is such that the inequality

P (a)3 + P (b)3 + P (c)3 ≥ 3P (a)P (b)P (c)

holds for any real numbers a, b, c with a+b+c = 0. Can the polynomial P (x) have
2012 different real zeros? (Miloš Milosavljević)

2. By σ(x) we denote the sum of divisors of a natural number x, including 1 and x.
For each n ∈ N, let f(n) be the number of natural numbers m, m ≤ n, for which
σ(m) is odd. Show that there exist infinitely many numbers n such that f(n) | n.

(Bojan Bašić)

3. Let P and Q be points inside a triangle ABC such that ∠PAC = ∠QAB and
∠PBC = ∠QBA.

a) Prove that the orthogonal projections of P andQ onto the sides of the triangle
lie on a circle.

b) Let D and E be the feet of perpendiculars from P to lines BC and AC, and
let F be that from Q to AB. The lines DE and AB meet at point M . Prove
that MP is perpendicular to CF . (Dušan Djukić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

1. Since x3+y3+z3−3xyz = 1
2(x+y+z)

(

(x− y)2 + (y − z)2 + (z − x)2
)

, the problem
condition is equivalent to “P (a) + P (b) + P (c) > 0 whenever a+ b+ c = 0”.

Consider the polynomial P (x) =
∏2011

k=0 (x− 1− k
4022

). For x 6 1 or x > 3
2
it holds

that P (x) > 0; Moreover, P (x) > 1 for x 6 0. For 1 < x < 3
2 , each factor x−1− k

4022
is less than 1

2 in absolute value, hence P (x) > − 1
22012 . If a+ b+ c = 0, then at least

one of a, b, c is nonpositive, say a ≤ 0. Then P (a) > 1 and P (b), P (c) > − 1
22012 , so

we have P (a)+P (b)+P (c) > 0. Thus the polynomial P (x) satisfies all conditions.

2. Recall that if n = pr11 pr22 · · · prkk is the factorization of n ∈ N into primes, then

σ(n) =
∏k

i=1(1 + pi + · · ·+ prii ). The number σ(n) is off if and only if all factors
1 + pi + · · ·+ prii are odd, which is equivalent to pi = 2 or 2 | ri. Thus σ(n) is odd
if and only if either n or n/2 is a perfect square, which yields f(n) = [

√
n] + [

√

n
2 ].

Note that f(n) 6 f(n+1) for each n. Furthermore, the quotient n
f(n) is unbounded,

hence for each k ∈ N there is the smallest n = nk for which n
f(n) > k. For k > 1

we have nk > 1 and nk−1
f(nk−1)

< k, which implies nk > kf(nk) > kf(nk − 1)

> nk − 1. This is only possible when the first two inequalities are equalities, i.e.
f(nk) | nk = kf(nk). The numbers nk are different, which finishes the proof.

3. Let H, I and G be the feet of the perpendiculars from Q to CB,CA and from P to
AB, respectively. Since the quadrilaterals AEPG and AFQI are similar, we have

∠AEG = ∠AFI, therefore E, F,G, I lie
on some circle k. Analogously, points D,
E, I,H lie on a circle k1, and points D,
H,F,G on a circle k2. If the circles k, k1
and k2 are distinct, their radical axes are
AB,BC and CA, but they are neither
congruent nor parallel, a contradiction.
Therefore k1 ≡ k2 ≡ k and D,E, F,G, A B

C

P
Q

D

E

F
M

G

K

L

H, I all lie on a single circle.
Let K and L be the centers of circles CDPE and PFG. Since MD · ME =
MF ·MG, line MP is the radical axis of these two circles, so it is perpendicular
to KL. Since K and L are the midpoints of PC and PF , the lines KL and CF
are parallel, hence MP ⊥ CF .

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::






	smo2012bookletcovers.pdf
	smo2012bookletinterior.pdf



