Serbian Mathematical Olympiad 2011

for high school students
Belgrade, April 2-3, 2011

Problems and Solutions

Cover photo: Cathedral of Saint Sava, Belgrade

SHORT HISTORY AND SYSTEM

Mathematical competitions in Serbia have been held since 1958. In the first years only republic competitions within the former Yugoslavia, which Serbia was a part of, were held. The first Federal Mathematical Competition in Yugoslavia was held in Belgrade in 1960, and since then it was held regularly every year, skipping only 1999 for a non-mathematical reason. The system has undergone relatively few changes. The earliest Federal Competitions were organized for 3rd and 4th grades of high school only; 2nd grade was added in 1970, and 1st grade in 1974. Since 1982 , 3rd and 4th grades compose a single category. After the breakdown of the old Yugoslavia in 1991, the entire system was continued in the newly formed FR Yugoslavia, later renamed Serbia and Montenegro. The separation of Montenegro finally made the federal competition senseless as such. Thus, starting with 2007, the federal competition and team selection exam are replaced by a two-day Serbian Mathematical Olympiad.

Today a mathematical competition season in Serbia consists of four rounds of increasing difficulty:

- Municipal round, held in early February. The contest consists of 5 problems, each 20 points worth, to be solved in 3 hours. Students who perform well qualify for the next round (50-60 points are usually enough).
- Regional round, held in late February in the same format as the municipal round. Each student's score is added to that from the municipal round. Although the number of students qualified for the state round is bounded by regional quotas, a total score of 110-120 should suffice.
- State (republic) round, held in late March in a selected town in the country. There are roughly 200 to 300 participants. The contest consists of 5 problems in 4 hours.
- Serbian Mathematical Olympiad (SMO), held in early April in a selected place in the country. The participants are selected through the state round: 26 from A category (distribution among grades: $3+5+8+10$), 3 from B category $(0+0+1+2)$, plus those members of the last year's olympic team who did not manage to qualify otherwise. Six most successful contestants are invited to the olympic team.

Since 1998, contests for each grade on the three preliminary rounds are divided into categories A (specialized schools and classes) and B (others). A student from category B is normally allowed to work the problems for category A instead. On the SMO, all participants work on the same problems.

The Serbian Mathematical Olympiad 2011 for high school students took place in Belgrade on April 2-3. There were 31 students from Serbia and 5 guest students from the specialized school "Kolmogorov" in Moscow. The average score on the contest was 9.75 points and all problems were fully solved by the contestants. Based on the results of the competition the team of Serbia for the 28-th Balkan Mathematical Olympiad and the 52-nd International Mathematical Olympiad was selected:

Teodor von Burg	Math High School, Belgrade	42 points
Filip Živanović	Math High School, Belgrade	23 points
Igor Spasojević	Math High School, Belgrade	18 points
Rade Špegar	Math High School, Belgrade	18 points
Stevan Gajović	Math High School, Belgrade	16 points
Stefan Mihajlović	HS "Svetozar Marković", Niš	16 points

In this booklet we present the problems and full solutions of the Serbian Mathematical Olympiad and the Balkan Mathematical Olympiad.

SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade, 02.04.2011.

First Day

1. Let $n \geqslant 2$ be a natural number and suppose that positive numbers $a_{0}, a_{1}, \ldots, a_{n}$ satisfy the equality

$$
\left(a_{k-1}+a_{k}\right)\left(a_{k}+a_{k+1}\right)=a_{k-1}-a_{k+1} \quad \text { for each } k=1,2, \ldots, n-1 .
$$

Prove that $a_{n}<\frac{1}{n-1}$.
(Dušan Djukić)
2. Let n be an odd positive integer such that numbers $\varphi(n)$ and $\varphi(n+1)$ are both powers of two $(\varphi(n)$ denotes the number of natural numbers coprime to n and not exceeding n). Prove that $n+1$ is a power of two or $n=5$. (Marko Radovanović)
3. Let H be the orthocenter and O be the circumcenter of an acute-angled triangle $A B C$. Points D and E are the feet of the altitudes from A and B, respectively. Lines $O D$ and $B E$ meet at point K, and lines $O E$ and $A D$ meet at point L. Let X be the second intersection point of the circumcircles of triangles $H K D$ and $H L E$, and let M be the midpoint of side $A B$. Prove that points K, L and M are collinear if and only if X is the circumcenter of triangle $E O D$.
(Marko Djikić)

Time allowed: 270 minutes. Each problem is worth 7 points.

SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Belgrade, 03.04.2011.

Second Day

4. Points M, X and Y are taken on sides $A B, A C$ and $B C$ respectively of a triangle $A B C$ such that $A X=M X$ and $B Y=M Y$. Let K and L be the midpoints of segments $A Y$ and $B X$ respectively, and let O be the circumcenter of triangle $A B C$. If points O_{1} and O_{2} are symmetric to point O with respect to K and L respectively, show that the points X, Y, O_{1} and O_{2} lie on a circle. (Marko Djikić)
5. Do there exist integers a, b and c greater than 2011 such that in the decimal system they satisfy

$$
(a+\sqrt{b})^{c}=\ldots 2010,2011 \ldots ? \quad \text { (Miloš Milosavljević) }
$$

6. Set T consists of 66 points, and set P consists of 16 lines in the plane. We say that a point $A \in T$ and a line $l \in P$ form an incident pair if $A \in l$. Show that the number of incident pairs cannot exceed 159 , and that there is such a configuration with exactly 159 incident pairs.
(Miloš Stojaković)

Time allowed: 270 minutes.
Each problem is worth 7 points.

SOLUTIONS

1. The given equation is equivalent to

$$
\frac{1}{a_{k}+a_{k+1}}=1+\frac{1}{a_{k-1}+a_{k}}
$$

for each $k>0$. It follows by induction that $\frac{1}{a_{k}+a_{k+1}}=k+\frac{1}{a_{0}+a_{1}}$ for $k>0$, which implies $\frac{1}{a_{n-1}+a_{n}}>n-1$ and therefore $a_{n}<\frac{1}{n-1}$.
2. If $n=\prod_{i=1}^{k} p_{i}^{r_{k}}$ is the factorization of n into primes, we have $\varphi(n)=$ $\prod_{i=1}^{k} p_{i}^{r_{k}-1}\left(p_{i}-1\right)$. Since $\varphi(n)$ has no odd prime divisors, we must have $a_{i}=1$ and $p_{i}-1=2^{b_{i}}$ for each i and some b_{i}. Number $2^{b_{i}}+1$ can be prime only if b_{i} is a power of two, so $p_{i}=2^{2^{c_{i}}}+1$ for some distinct c_{i}.
Suppose that $n+1$ is not a power of two. Then from $\varphi(n+1)$ being a power of two we obtain that all odd prime divisors of $n+1$ are of the form $2^{2^{d_{i}}}+1$. Hence

$$
n=\prod_{i=1}^{k}\left(2^{2^{c_{i}}}+1\right), \quad n+1=2^{t} \prod_{j=1}^{l}\left(2^{2^{d_{j}}}+1\right)
$$

where all c_{i} and d_{j} are mutually distinct. We can assume without loss of generality that $c_{1}<\cdots<c_{k}$ i $d_{1}<\cdots<d_{l}$.
For any $m, M \in \mathbb{N}, m \leq M$, simple induction shows that

$$
\frac{2^{2^{m}}+1}{2^{2^{m}}}<\prod_{i=m}^{M} \frac{2^{2^{i}}+1}{2^{2^{i}}}=\frac{2^{2^{m}}}{2^{2^{m}}-1} \cdot \frac{2^{2^{M+1}}-1}{2^{2^{M+1}}}<\frac{2^{2^{m}}}{2^{2^{m}}-1} .
$$

This gives us

$$
\frac{2^{2^{c_{1}}}+1}{2^{2^{c_{1}}}} 2^{c} \leqslant n<\frac{2^{2^{c_{1}}}}{2^{2^{c_{1}}}-1} 2^{c} \quad \text { i } \quad \frac{2^{2^{d_{1}}}+1}{2^{2^{d_{1}}}} 2^{d} \leqslant n+1<\frac{2^{2^{d_{1}}}}{2^{2^{d_{1}}}-1} 2^{d}
$$

where $c=\sum_{i} 2^{c_{i}}$ and $d=t+\sum_{j} 2^{d_{i}}$. It follows that $c=d$. If $d_{1}>c_{1}$, we have $\frac{2^{2^{d_{1}}}}{2^{2^{d_{1}}}-1}<\frac{2^{2^{c_{1}}}+1}{2^{2^{c_{1}}}}$, so $n+1<n$, a contradiction. Therefore $d_{1}<c_{1}$ and thus $n+1 \geqslant \frac{2^{2^{d_{1}}}+1}{2^{2^{d_{1}}}} 2^{c}>\frac{2^{2^{c_{1}}}}{2^{2^{c_{1}}}-1} 2^{c}>n$, so $\frac{n+1}{n}>\frac{2^{2^{d_{1}}}+1}{2^{2^{d_{1}}}} \cdot \frac{2^{2^{c_{1}}}-1}{2^{2^{c_{1}}}}$ and, since $n \geqslant 2^{2^{c_{1}}}+1 \geqslant a^{2}+1$ for $2^{2^{d_{1}}}=a, \frac{n+1}{n}>\frac{(a+1)\left(a^{2}-1\right)}{a^{3}}=1+\frac{a^{2}-a-1}{a^{3}}$, from which we deduce $a^{2}+1 \leqslant n<\frac{a^{3}}{a^{2}-a-1}$. The only possibility is $a=2$ and $n=5$.
3. Suppose X is the circumcenter of $\triangle O D E$. Then $90^{\circ}-\angle K D E=90^{\circ}-\angle O D E=$ $\angle X E O=\angle X E L=\angle X H D=\angle X K D$ (all the angles are oriented), which means
that $X K \perp D E ;$ Analogously, $X L \perp$ $D E$, so K and L both lie on the perpendicular bisector of $D E$, hence $D E H O$ is an equilateral trapezoid and thus D, E, O, H lie on a circle.
On the other hand, if O lies on circle $H D E$, which is the circle with diameter $C H$, then the angles subtended by chords $E H$ and $O D$ are equal $(\angle E C H=\angle O C D)$, so $D E H O$ is an equilateral trapezoid and hence $D L=E L$. Now $\angle E X H=\angle E L H=$

$2 \angle E D H$ and analogously $\angle D X H=2 \angle D E H$, so X is the circumcenter of circle $D E O H$. Thus we have shown that X is the circumcenter of $O D E$ if and only if D, E, O and H lie on a circle.
If points D, E, O, H are on a circle, then K, L and M belong to the perpendicular bisector of $D E$, which proves one direction of the problem. Now suppose that O lies outside the circle $C D H E$ (the case when O is inside the circle is similarly dealt with). Since $C O \perp D E$, we have $D L>L E$ and $E K>K D$, so K and L lie on different sides of the perpendicular bisector of $D E$, while M lies on the bisector. Therefore if K, L and M are collinear, M must lie between K and L. It follows that one of the points K, L is outside triangle $A B C$, whereas the other one is inside the triangle. However, when O is outside the quadrilateral $A B D E$, points K and L are both outside the triangle, otherwise they are both inside. This contradicts the assumption that M is on line $K L$, thus proving the other direction.
4. Consider the cartesian system with the origin at M and x-axis along the line $A B$. Let (a, b) and (c, d) be the coordinates of X and Y respectively. Since $A X=X M$ and $B Y=Y M$, the coordinates of A and B are $(2 a, 0)$ and $(2 c, 0)$, whereas those of K and L are $\left(a+\frac{c}{2}, \frac{d}{2}\right)$ and $\left(c+\frac{a}{2}, \frac{b}{2}\right)$, respectively. Point O has coordinates $(a+c, e)$ for some e, which gives us $O_{1}(a, d-e)$ and $O_{2}(c, b-e)$. Therefore, points O_{1} and O_{2} are symmetric to X and Y with respect to the line $y=\frac{b+d-e}{2}$. This means that X, Y and O_{1}, O_{2} are vertices of a (possibly degenerate) equilateral trapezoid and hence lie on a circle.

Remark. It is obvious from this solution that the statement of the problem remains valid when O is any point on the perpendicular bisector of $A B$.
5. We shall show that such numbers a, b and c exist. Note that the number $x=$ $(a+\sqrt{b})^{c}+(a-\sqrt{b})^{c}$ is an integer. It is enough to choose a, b, c in such a way that x is a multiple of 10^{4} and 7989.7989 $>(a-\sqrt{b})^{c}>7989.7988$.

For an odd c, number $x=2 a^{c}+2\binom{c}{2} a^{c-2}+\cdots+2\binom{c}{c-1} a$ is divisible by a, so taking any a that is divisible by 10^{4} verifies the first condition. The second condition will be fulfilled if we take a and b so that $1<a-\sqrt{b}<\sqrt{\frac{7989.7989}{7989.7988}}$ - for example, $a=10^{8}$ and $b=(a-1)^{2}-1$. Indeed, let c be the smallest odd integer such that $(a-\sqrt{b})^{c}>7989.7988$. This c is obviously greater than 2011 (in this case, $c=1,797,184,159)$ and $(a-\sqrt{b})^{c}<7989.7989$.
6. Denote by A_{1}, \ldots, A_{66} the points from T and by a_{i} the number of lines from P containing A_{i}. Then the number of pairs of lines intersecting at A_{i} equals $\binom{a_{i}}{2}$, and the number of incident pairs $I=\sum a_{i}$. Since any two lines meet in at most one point, we have $\sum_{i=1}^{66}\binom{a_{i}}{2} \leqslant\binom{ 16}{2}=120$. Let b_{k} be the number of points from T which lie on exactly k lines from P. Then $\sum b_{k}=66, \sum\binom{k}{2} b_{k} \leqslant 120$ and $I=\sum k b_{k} \leqslant \sum \frac{1}{2}\left(3+\binom{k}{2}\right) b_{k}=\frac{1}{2}(3 \cdot 66+120)=159$, because $3+\binom{k}{2} \geq 2 k$. Equality is attained when $b_{k}=0$ for $k \notin\{2,3\}, b_{2}=39$ and $b_{3}=27$ - i.e. when the lines from P determine exactly 39 double and 27 triple intersection points.
An example of a configuration with 159 incident pairs can be constructed using Pappus' theorem. Take points A_{1}, A_{2}, A_{3} on line a and B_{1}, B_{2}, B_{3} on line $b \| a$, then draw 9 lines $A_{i} B_{j}, i, j \in\{1,2,3\}$. For instance, on the image we set $A_{1} A_{2}$: $A_{2} A_{3}: B_{1} B_{2}: B_{2} B_{3}=2: 2: 3: 6$, so among these lines no two are parallel and no three concurrent. By Pappus' theorem, the 9 lines determine 18 intersection points which are three-by-three collinear - so these determine another 6 lines. Together with these 6 lines, we have an image with 15 lines and 24 triple intersections. Moreover, three lines obtained by Pappus' theorem meet in a point (denoted by K), which gives us 25 th triple intersection. Draw one more line through two double intersection points only. The set P of the 16 drawn lines and set T consisting of the 27
 triple intersection points and 39 remaining double intersection points determine 159 incident pairs.

The 28-th Balkan Mathematical Olympiad was held from May 4 to May 9 in Iasi in Romania. The results of Serbian contestants are given in the following table:

	1	2	3	4	Total	
Teodor von Burg	10	0	3	10	23	Silver Medal
Filip Živanović	10	1	0	2	13	Bronze Medal
Igor Spasojević	10	1	10	2	23	Silver Medal
Rade Špegar	4	9	4	10	27	Silver Medal
Stevan Gajović	10	2	3	0	15	Bronze Medal
Stefan Mihajlović	10	1	2	3	16	Bronze Medal

After the contest, 9 contestants (6 officially +3 unofficially) with $30-40$ points were awarded gold medals, $31(16+15)$ with $17-29$ points were awarded silver medals, and $46(17+29)$ with $10-16$ points were awarded bronze medals.

The unofficial ranking of the teams is given below:

Member Countries		Guest Teams	
1. Romania	170	Romania B	116
2. Turkey	148	Kazakhstan	113
3. Bulgaria	137	Italy	106
4. Serbia	117	United Kingdom	99
5. Greece	84	Tajikistan	78
6. Moldova	65	Turkmenistan	68
7. FYR Macedonia	64	France	66
8. Cyprus	27	Azerbaijan	64
9. Albania	25	Saudi Arabia	62
9. Montenegro	25	Indonesia	21

BALKAN MATHEMATICAL OLYMPIAD

Iaşi, Romania, 06.05.2011.

1. Let $A B C D$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at E. The midpoints of $A B$ and $C D$ are F and G respectively, and ℓ is the line through G parallel to $A B$. The feet of the perpendiculars from E onto the lines ℓ and $C D$ are H and K, respectively. Prove that the lines $E F$ and $H K$ are perpendicular.
(United Kingdom)
2. Given real numbers x, y, z such that $x+y+z=0$, show that

$$
\frac{x(x+2)}{2 x^{2}+1}+\frac{y(y+2)}{2 y^{2}+1}+\frac{z(z+2)}{2 z^{2}+1} \geq 0
$$

When does equality hold?
(Greece)
3. Let S be a finite set of positive integers which has the following property: If x is a member of S, then so are all positive divisors of x. A non-empty subset T of S is good if, whenever $x, y \in T$ and $x<y$, the ratio y / x is a power of a prime number. A non-empty subset T of S is bad if, whenever $x, y \in T$ and $x<y$, the ratio y / x is not a power of a prime number. A one-element set is considered both good and bad. Let k be the largest possible size of a good subset of S. Prove that k is also the smallest number of pairwise disjoint bad subsets whose union is S. (Bulgaria)
4. Let $A B C D E F$ be a convex hexagon of area 1 , whose opposite sides are parallel. The lines $A B, C D$ and $E F$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $B C, D E$ and $F A$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is not less than $\frac{3}{2}$.
(Bulgaria)

Time allowed: 270 minutes.
Each problem is worth 10 points.

SOLUTIONS

1. We may assume that $G-K-C$. Points E, G, H and K lie on the circle with diameter $E G$, so $\angle E H K=\angle E G K$. Since triangles $E A B$ and $E D C$ are similar $(\angle A E B=\angle D E C$ and $\angle E A B=$ $\angle E D C)$, so are triangles $E F B$ and $E G C$. Thus $\angle E F B=\angle C G E=$ $\angle K H E$, which together with $F B \perp H E$
 yields $E F \perp K H$.
2. The desired inequality can be rewritten as

$$
\frac{(2 x+1)^{2}}{2 x^{2}+1}+\frac{(2 y+1)^{2}}{2 y^{2}+1}+\frac{(2 z+1)^{2}}{2 z^{2}+1} \geq 3
$$

Assume without loss of generality that $|z|=\max \{|x|,|y|,|z|\}$. By the CauchySchwarz inequality, we have
$\frac{(2 x+1)^{2}}{2 x^{2}+1}+\frac{(2 y+1)^{2}}{2 y^{2}+1} \geq \frac{2(x+y+1)^{2}}{x^{2}+y^{2}+1}=\frac{2(1-z)^{2}}{x^{2}+y^{2}+1} \geq \frac{2(1-z)^{2}}{2 z^{2}+1}=3-\frac{(2 z+1)^{2}}{2 z^{2}+1}$
as we needed.
Equality holds when $x=y=z=0$ or $(x, y, z)=\left(-\frac{1}{2},-\frac{1}{2}, 1\right)$ up to a permutation.
3. No two elements of a good set with k element can belong to a bad set, so we need at least k bad sets to cover S.
It remains to construct k bad sets that cover S. Let p_{1}, \ldots, p_{n} be all primes in S. Since S contains all divisors of its elements, each element of S must be of the form $x=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{n}^{r_{n}}$, where $r_{i} \leq k-1$ for all i (because numbers $x / p_{i}^{j}, j=0, \ldots, r_{i}$, form a good subset of S with $r_{i}+1$ elements).
For each such $x \in S$, define $\kappa(x)=r_{1}+\cdots+r_{n}$. If $x, y \in S, x<y$ belong to a good set, we have $1 \leq \kappa(y)-\kappa(x) \leq k-1$. Now consider sets $S_{m}=\{x \in S \mid \kappa(x) \equiv m$ $(\bmod k)\}, m=1, \ldots, k$. It follows from above that each S_{m} is bad; Moreover, the S_{m} are pairwise disjoint and their union is S, so our construction is complete.
4. Let $A B, C D$ and $E F$ determine triangle $A_{1} C_{1} E_{1}$ and $B C, D E, F A$ determine triangle $B_{1} D_{1} F_{1}\left(C D \cap E F=\left\{A_{1}\right\}, D E \cap F A=\left\{B_{1}\right\}\right.$, etc. $)$. Denote $A B / F_{1} B_{1}=a$, $B C / A_{1} C_{1}=b, C D / B_{1} D_{1}=c, D E / C_{1} E_{1}=d, E F / D_{1} F_{1}=e, F A / E_{1} A_{1}=f$. Then $\left[A B D_{1}\right]=a^{2}\left[B_{1} D_{1} F_{1}\right]$ etc, so we obtain $[A B C D E F]=\left(1-a^{2}-c^{2}-\right.$ $\left.e^{2}\right)\left[B_{1} D_{1} F_{1}\right]$ and $[A B C D E F]=\left(1-b^{2}-d^{2}-f^{2}\right)\left[A_{1} C_{1} E_{1}\right]$.

Ratios b, d, f can be expressed in terms of $a, c, e: \quad b=\frac{B C}{A_{1} C_{1}}=\frac{D_{1} F_{1}-D_{1} B-C F_{1}}{E F}$. $\frac{E F}{A_{1} E+E F+F C_{1}}=\frac{1-a-c}{2-a-c-e}$ and analogously $d=\frac{1-c-e}{2-a-c-e}$ and $f=\frac{1-e-a}{2-a-c-e}$. If we denote $a+c+e=p$, we have $a^{2}+c^{2}+e^{2} \geq \frac{1}{3} p^{2}$ and $b^{2}+d^{2}+f^{2}=$ $\frac{3-4 p+p^{2}+a^{2}+c^{2}+e^{2}}{(2-p)^{2}} \geq \frac{1}{3}\left(\frac{3-2 p}{2-p}\right)^{2}$.

Suppose that $\left[A_{1} C_{1} E_{1}\right]<\frac{3}{2}$ and $\left[B_{1} D_{1} F_{1}\right]<\frac{3}{2}$. Then the above equalities imply $a^{2}+c^{2}+e^{2}<\frac{1}{3}$ and hence $p<1$, but also $b^{2}+d^{2}+f^{2}<\frac{1}{3}$ and hence $\frac{3-2 p}{2-p}<1$, a contradiction.

Mathematical Competitions in Serbia
 http://srb.imomath.com/

The IMO Compendium Olympiad Archive	Mathematical Society of Serbia
http://www.imocompendium.com/	http://www.dms.org.rs/

nemememe
 Nikola Petrovic -
The IMO Compendium \qquad for The International Mathematical Second Edition Second Edition
9Springe

The IMO Compendium - 2nd Edition: 1959-2009
Until the first edition of this book appearing in 2006, it has been almost impossible to obtain a complete collection of the problems proposed at the IMO in book form. "The IMO Compendium" is the result of a collaboration between four former IMO participants from Yugoslavia, now Serbia, to rescue these problems from old and scattered manuscripts, and produce the ultimate source of IMO practice problems. This book attempts to gather all the problems and solutions appearing on the IMO through 2009. This second edition contains 143 new problems, picking up where the 1959-2004 edition has left off, accounting for 2043 problems in total.
Publisher: Springer (2011); Hardcover, 823 pages; Language: English; ISBN: 1441998535
For information on how to order, visit http://www.imocompendium.com/

