SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Niš, 06.04.2010.

First Day

1. Some of *n* towns are connected by two-way airlines. There are *m* airlines in total. For i = 1, 2, ..., n, let d_i be the number of airlines going from town *i*. If $1 \le d_i \le 2010$ for each i = 1, 2, ..., 2010, prove that

$$\sum_{i=1}^{n} d_i^2 \le 4022m - 2010n.$$

Find all n for which equality can be attained.

(Aleksandar Ilić)

- 2. In an acute-angled triangle ABC, M is the midpoint of side BC, and D, Eand F the feet of the altitudes from A, B and C, respectively. Let H be the orthocenter of $\triangle ABC$, S the midpoint of AH, and G the intersection of FEand AH. If N is the intersection of the median AM and the circumcircle of $\triangle BCH$, prove that $\measuredangle HMA = \measuredangle GNS$. (Marko Djikić)
- **3.** Let A be an infinite set of positive integers. Find all natural numbers n such that for each $a \in A$

$$a^{n} + a^{n-1} + \dots + a^{1} + 1 \mid a^{n!} + a^{(n-1)!} + \dots + a^{1!} + 1.$$

(Miloš Milosavljević)

Time allowed: 270 minutes. Each problem is worth 7 points.

SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Niš, 07.04.2010.

Second Day

- 4. Let O be the circumcenter of triangle ABC. A line through O intersects the sides CA and CB at points D and E respectively, and meets the circumcircle again at point $P \neq O$ inside the triangle. A point Q on side AB is such that $\frac{AQ}{QB} = \frac{DP}{PE}$. Prove that $\measuredangle APQ = 2\measuredangle CAP$. (Dušan Djukić)
- 5. An $n \times n$ table whose cells are numerated with numbers $1, 2, \ldots, n^2$ in some order is called *Naissus* if all products of n numbers written in n scattered cells give the same residue when divided by n^2+1 . Does there exist a Naissus table for

(a)
$$n = 8;$$

(b) $n = 10?$

(*n* cells are *scattered* if no two are in the same row or column.)

(Marko Djikić)

6. Let a_0 and a_n be different divisors of a natural number m, and a_0, a_1, a_2, \ldots , a_n be a sequence of natural numbers such that it satisfies

$$a_{i+1} = |a_i \pm a_{i-1}|$$
 for $0 < i < n$.

If $gcd(a_0, \ldots, a_n) = 1$, show that there is a term of the sequence that is smaller than \sqrt{m} . (Dušan Djukić)

Time allowed: 270 minutes. Each problem is worth 7 points.