The 3rd Romanian Master of Mathematics Competition - Solutions
Day 1: Friday, February 26, 2010, Bucharest

Problems ©. For a finite non-empty set of primes P, let
m(P) be the largest possible number of consecutive positive
integers, each of which is divisible by at least one member

of P. (In the sequel, the number | P| is the size of the set P.)

(i) Show that |P| <
min(P) > |P|;

m(P), with equality if and only if

(i) Show that m(P) < (|P|+1)(2!"' -1).

Romania, Dan Schwarz

Solution. In the sequel we will consider P being made of
theprimes 1< pyj < py <---<pg,withk=|P|=1.

(i) By the Chinese Remainder Theorem there will exist
some a € Nsuchthata=-i (mod p;), hence p; | a+i. Then
the set fa+i; i =1,2,...,k} of k consecutive integers has
the desired property, hence m(P) = k. When minP > |P|,
within any set of |P| + 1 consecutive integers at most one
is divisible by any p € P, hence by the Pigeonhole Princi-
ple there will be one not divisible by any of the primes in P.
On the other hand, when minP < |P|, we will make again
use of the Chinese Remainder Theorem, so there will exist
some a € N such that a = —r; (mod p;), hence p; | a+r;,
where {r;; i =1,2,...,k} ={1,2,..., k} and the extra require-
ment that r; = k+ 1 -p1. It follows thattheset{a+i; i =
1,2,...,k, k+1} of k + 1 consecutive integers has the desired
property, hence m(P) =z k+1 > |P|.

(ii) Now, let a set made of m consecutive integers have the
desired property. For any ¢ # I < {1,2,...,k}, the number
N(I) of its elements which are divisible by [];¢; p; will satisfy
the inequality

m
ez pi
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Then, by the Principle of Inclusion/Exclusion, one has

m= Z( DY N(I)<Z( )+mz(_l)z+1 y !

|=i i=1 |1|:inieIpi

The first term is clearly equal to 2¥ — 1, while the second is
equal to

N

therefore m < (k +1) (2F — 1), and so will be m(P). |

Remarks. (1] A simpler variant could be

(ii) Prove that|P|< m(P) < | }gll?l)lc) | m(P") < 00.[2)

Problem 2. For each positive integer 7, find the largest
real number C, with the following property. Given any n
real-valued functions fi(x), f2(x),..., fn(x) defined on the
closed interval 0 = x < 1, one can find numbers x, x3,..., Xy,
such that 0 < x; < 1, satisfying

[AGD + fo(x2) + -+ falxn) = X1 X2+ Xp| 2 Cp.

Serbia, Marko Radovanovié

1
, i.e. that for

, there exist numbers

n -_—
Solution. First we will prove that C, =
any n functions fi, f5,..., fn: [0,1] = R
X1, X2, ..., Xp in [0,1] such that
n-1
2n

[Gx) + falxp) + o+ frn(xn) = X122+ xp] =

For n = 1 this is trivial. For n = 2 suppose, contrariwise, that

for all x3, x2, ..., X in [0, 1] we have
-1

[fi(x1) + fa(x2) + -+ fn(Xn) — X1 X2+ Xp| < —2—"1—

Pluggingin x; =1forl1<i<n, (1)—1'<—
i= 1

Pluggingin x; =0for1 <i<n, (O)| < —1
Pluggingin (foreveryl < i< n) xXi= Oand Xj= lforall] #1,
we get [f;(0)+ ) f](l)) . Since

j#i

(n-1) Z fi) = Z (f,-m) +y fju)) - }l_f,-(O),
i=1

i=1 i=1 j#i
by the triangle inequality we have
&L n-1
-1 D <n+1)—.
(n )|i=21f,( | <=

On the other hand, by again the triangle inequality we have

1<|Zf,(l)‘ |Zf,(1)—1| L "z'nl=1,

which is a contradiction.

n-1
2n
sufficient to prove that for the n (equal) functions

To prove that{ C,, = is thelargest constant, it will be

" n-1

fix)=fx):=—- EYvR

l<is<n,

and any n numbers x;, X, ..., X5 in [0, 1], we have

n-1

[fx1) + flxa) +--- o

+ f(xp) —x1X2+-- Xp] <

’

equivalent to

The LHS inequality follows from the AM-GM inequality.
The RHS inequality is equivalent to

1 & z -1
sl -Ilms=—
ni=1 i=1 n

F(x)=F(x1,X2,...,Xp) :=

at all points x = (x1, xp,..., x,) of the hypercube [0,1]". Since
F is convex in every variable, its maximum is reached at
some vertex v of the hypercube (point with x; =0or x; =1,



forall 1 < i < n). It is easy to see that for all such points we

-1
have F(v) < ZIT, which completes the proof. n

Remarks. The choice of the functions

x" n-1
fi(x)2=-;-—

oz’ l<isn

could be justified by the fact that if we try all f; = f and all
x; = x, the relation becomes |nf(x) — x| = Cy, as tight as
n

1
possible for some x € [0,1]. Then f(x) = % = ;Cn is a po-
tential candidate.

On a different note, RHS inequality above is equivalent to
1 n n
F(x) = F(x1, %2, Xn) 1= — Y xl-[]xiz0
i=1 i=1

at all points x = (x1, X2,...,Xp) of the hypercube [0,1]", and
this again may be justified by F being convex, since it can
be easily seen that F(v) = 0 at any vertex v of the hypercube,
s0 one may use a unifying argument for both sides of that
inequality.

Problem 3. Let A; A» A3 A4 be a convex quadrilateral with
no pair of parallel sides. For each i = 1, 2,3,4, define w; to be
the circle touching the quadrilateral externally, and which is
tangent to the lines A;_1A;, AjAi41 and A; 1A, (indices
are considered modulo 4, so Ag = Ay, As = A; and Ag = A3).
Let T; be the point of tangency of w; with the side A; A;41.
Prove that the lines A; Ay, A3A4 and T, T4 are concurrent if
and only if the lines A3 A3, A4A; and T; T3 are concurrent.

Russia, Pavel Kozhevnikov

Solution. We start with a reformulation of a well-known
statement on harmonic cyclic quadruples (K3, Kz, K3, Ky),
also provable by polar transformation (projective methods).

Lemma. Being given four pairwise non-parallel lines ¢;,
i =1,2,3,4, tangent to a circle w at points K;, and such that
lines ¢;, ¢35 and K; K, are concurrent, then lines ¢, ¢, and
Ki K3 are also concurrent.

Proof. Let O be the centre of w, X = 41N l3NKxKy, Y =
¢>n¥,. Wehave OX L K3 K3 and OY L K»2Ky. Let Z = 0X n
Ki1K3, T = OY n K2K,. Notice that triangles AOK3X and
AOZK3 are similar, and also similar are triangles AOK;Y
and AOTKy, hence OY - OT = OK: = OK; = 0X - OZ.

This means that triangles AOXT and AOQOY Z are similar,
hence YZ 1 OX,andso Y € K1 K3. O

Suppose now lines Az Az, A4A; and T T3 are concurrent
atapoint P. Let T,, T, be the tangency points of lines A4 4,
respectively Az As, to circle w;, and let T3' be the second
meeting point of line T} T3 and circle w;. Let the tangent
to w; at T; meet the lines A4A;, A A3 at points A}, respec-
tively A}. The (direct) homothety of centre P that takes w;
to w3 maps T} to T3, hence A3A, || A3 Aj.

Let Q = A1 Ay N A3Ag, Q' = AjA; N ALA). Applying the
Lemma to circle w; and lines AyAs, AJA}, AgA;, AAy,
yields that points Q’, T;, T, are collinear. The (inverse) ho-
mothety of centre A; that takes AQA; A4 to AQ' A; A} maps
w4 t0 w1, so maps T, to Ty, hence Q'T, || QTy. Similarly,
the (inverse) homothety of centre A, that takes AQAz A3
to AQ'A2 A} maps w; to wj, so maps T, to T;, hence also
Q'T; || QT,. Since points Q’, T;, T, are collinear, it follows
points Q, T, T are also collinear.

The converse implication is done in a similar way, due to
the cyclic nature of the notations used (just increase each
index by 1). |

Alternative Solution. (D. Serbanescu) Suppose Q, T, Ty
are collinear. We will show P, T;, T3 are collinear. We will
use the notations of the solution above, but also let S, S}
be the tangency points of line A; A; to circle w., respectively
w4, and let S, S} be the tangency points of line A3 A4 to cir-
cle wy, respectively w4. Let T, be the (other than T3) meet-
ing point of line QT» T4 and circle wy, and let the tangent
line to w; at T (parallel to Aj A4) meet A A3 at P’ (via the
(direct) homothety of centre Q that takes w4 to w>).

Clearly APT> T4 ~ AP'T, T, and AP'T, T, is isosceles, so
PT» = PTy4 (in other words, if Q, T», Ty are collinear then
PT, = PTy; the other implication trivially also holds, but is
irrelevant here).

From PT, = PT; and PT, = PT, follows T, T, = T, Ty. As
external tangents, T, T» = T, S} and T, Ty = T1 S}, hence T is
the midpoint of §]S}. Similarly, T3 is the midpoint of S5 S7.
It follows that P, T, T3 lie on the radical axis of the circles
w» and wy, hence are collinear.

The converse implication is done in a similar way. ]

Remarks.

1. The statement remains true if points T; are replaced
by their symmetrical 1 ; with respect to the midpoints of the
segments A;A;1.

2. Via some trigonometrical computations, one obtains

that both conditions in the statement are equivalent to the
o . Al e A3 . Az R A4
condition sin — sin — = sin — sin —.
2 2 2
END

[1] When the primes in P are the first |P| consecutive primes
q1,92,.-., gk it is easy to see that the set of integers between
1 and the next prime gy, has the desired property, so m(P) =
qk+1 — 2. It is obvious that one can check just the positive in-
tegers less than [1; <;<k g; in order to verify that this is indeed
the value of m(P), and this conjecture seems to hold, since it is
true for k = 1,2,3,4,5. However, for k = 6, there exists a larger
set than (prescribed) between 1 and 13, made by the numbers
between 113 and 127.

[2] The proof goes by simple induction on k = | P|. Denote m(k) =

|x}r)}a>l(c m(P); it is quite clear that m(1) = 1. Assume therefore
that m(k) < oo and consider sets P with |P| = k+ 1. If maxP >
2m(k) + 1, then m(P) < 2m(k) + 2, since within any set of
2m(k) + 2 consecutive integers at most one is divisible by
max P, so there would exist a subset of at least m(k)+ 1 consec-
utive integers for P\{max P}, absurd. If max P < 2m(k) +1, then
there are a finite number of such sets P, and clearly m(P) <
[Ipep p, so all will have a common upper bound. It follows that
m(k+1) <oo. O
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i v 4. Determine whether there exist a polynomial
f (xl, JC2) in two variables, with integer coefficients, and two
points A = (a3, az) and B = (b1, by) in the plane, satisfying all
the following conditions:

(i) Aisan integer point (i.e., a; and ay are integers);

(ii) a1 — b1l +laz — bz| = 2010;
(iil) f(n1,n2) > f(a1,ap), for all integer points (n;, np) in

the plane other than A4;

(iv) f(x1,x2) > f(by1, b), for all points (x1, xp) in the plane
other than B.

Italy, Massimo Gobbino

Solution. The triple (f(x1, x2), A, B) does exist, so -

Let A= 0 =(0,0), B = (x,)0) = (2009 + 2 . 3) The idea
is to search for a polynomial f such that f(x,y) = 0 is the
equation of an ellipse centred at B, passing through O and
with tangent line y = 0 at O. In fact, if f is chosen like this,
the ellipse f(x,y) = 0 is completely contained in the region
{(x,y); 0 < y < %}, with O the only integer point on the
ellipse or in its interior; clearly, the absolute minimum of
f(x,y) is attained at B and f(x,y) is positive at all integer
points other than O. Therefore, we consider polynomials of

the type

X7 :9M(X—xo)2+9N(X—xo)(Y—yo)+9P(Y—y0)2—Q

where M, N, P, Q are integers with M, P, Q, AMP - N? > 0.
The condition that the ellipse f(x,y) = 0 passes through
O, with tangent line y = 0 at O, is expressed by

6029°M +6029N+P - Q=0
2-6029M + N =0.

It is then sufficient to choose M =1, N = —2-6029, P any
integer greater than 60292 and Q = P — 60292, [ |

Alternative Solution.[1] (D. Schwarz)

Given any integer point A(ai,ay), there exist infinitely
many points B(b1,bz) with b, by € Q\ Z, and such that
@y — byl + |az — bz| = 2010, for example by =a; +a+7r, by =
a+pB+(1-r),witha,feZ,,reQn(0,1), and a+ S = 2009.
We now will consider polynomials of the type

fX V) =N(X-a)?+ (¥ —ap)? +¢) (X - b)? + (Y - bp)?)

where € € Q} and N € Z} large enough for f(X,Y) to have
integer coefficients.

One then has f(b1, b2) = 0, while f(x, y) > 0 for all points
(x, y) in the plane, other than B.

One also then has f(ai1,az) = Ne((a1 - b1)? + (az - bp)?),
while one has, for all integer points (n3,n2) in the plane,
other than A, min((n1 - a))?+ (nz—a2)?> +¢) = 1+ ¢ and
min ((ny — b1)? + (n2 - by)*) = m, for some m € Qn (0, 3] (for
example m =  whenr = }), therefore F(n;, n2) > N(1+&)m.

In order to have f(n;,ny) > f(ay, ay) itis thus enough that
N(1+¢e)m = Ne((a1 — b1)? + (az — by)?), therefore let us take
e = m/((a1- b))%+ (ay— bp)? — m) € Q*, and then choose
some appropriate N. [ |

Remarks. It is a case of applying the knowledge that some
closed simple curve given by f(x, y) = 0 separates the plane
into two regions, with values of one sign in the interior re-
gion, and values of the opposite sign in the exterior region.
Once this idea comes to mind, the problem turns into a sim-
ple exercise in analytic geometry of the conics.

Notice that the point C(2xy,2yp), the symmetrical of A
with respect to B, also lies on the ellipse F(x,y) = 0. What
in fact we have done is to take the circle given by equation
I'(x,y) = (x—x0)® + (¥ - yo)? — (x5 + y2) and then stretch it on
a direction perpendicular to OB, until a resulting rational
ellipse contains no other integer points than A.

Problem 5. Let n be a given positive integer. Say that a
set K of points with integer coordinates in the plane is con-
nected if for every pair of points R, S € K, there exist a posi-
tive integer £ and a sequence R = T, T1,..., Ty = S of points
in K, where each T; is distance 1 away from T;.;. For such a
set K, we define the set of vectors

A(K) = RSIRS(—:K}

What is the maximum value of |A(K)| over all connected sets
K of 2n + 1 points with integer coordinates in the plane?

Russia, Grigory Chelnokov

Solution. We claim the answer is . A model
is K={(0,00}U{(,00; 1=i=nluf0,i); 1=i= n}, when
W={@a,-b);0=<ab<snlu{(-a,b);0=<a,b=<n} Itisleft
to prove that |W| = 2n? + 4n +1 for any set K.

What the statement of the problem describes is a con-
nected graph G = (K, E) of order 2n + 1, whose vertices are
the points in K, while the edges are the horizontal/vertical
segments of length 1 that connect (some of) these points.
The key to the proof is to sequence the elements of K as
Ao, A1,..., A2y such that the graph Gy := G[ Ay, Ay, ..., Ag] is
connected for every 1 < k < 2n; this can be done through

Lemma.[2] The vertices of a finite connected graph G can
always be enumerated, say as a sequence vy, ..., V|g|-1, SO
that Gy := Glvy, ..., vg] is connected for every 1 < k < |G| -

Proof. Pick any vertex as vy, and assume inductively that
vg,..., Vx have been chosen for some 0 < k < |G| - 1. Now
pick a vertex v € G— Gg. As G is connected, it contains a
v — g path P. Choose as vy, the last vertex of P in G — Gy;
then vy, has as neighbour in Gy the next vertex of P. The
connectedness of every G follows by induction on k. 0

Moreover, if we just keep the edges through which Ay,
has the (selected) neighbour in Gy, then Gy is a tree, and
so Gz, is a spanning tree of G. Call the vertex horizontal
(vertical) if the edge that connects him is horizontal (verti-
cal). Denote by h, respectively v, the number of horizon-
tal, respectively vertical vertices; since Gy, is a tree, it fol-
lows h + v = 2n. The point Ag contributes 27 + 1 vectors
m. Now, for 0 < k < 2n, each point Ag,; contributes at
most (2n + 1) — x new vectors, where x = h if the vertex is
horizontal, respectively x = v if the vertex is vertical, since

those vectors Ag41 A;, with ends at the corresponding edges



of same direction, will be duplicated by the vectors deter-
mined by the opposite parallel sides of the parallelograms
created, which have already been accounted for.

Therefore the total number of distinct vectors will be
IW| < @n+1)2—h*—v?. But B>+ v? = §(h+v)? = 2n? hence
[Wl<@n+1)?-2n%=2n*>+4n+1.13] |

Problem 6. Given a polynomial f(x) with rational co-
efficients, of degree d = 2, we define the sequence of sets
2@, F1@),... by f°@ = Q and (@) = f(f"(Q)) for
n = 0. (Given a set S, we write f(S) for the set {f(x) | x € S}.)

Let f“(Q) = N2, /(@) be the set of numbers that are in
all of the sets f"(Q). Prove that f*(Q) is a finite set.

Romania, Dan Schwarz

Solution. For any function f, denote its n-th iterate f".
Take d = deg f = 2. One can write f(x) = %(axd + g(x)) for
some NeZ},acZ* and some g € Z[x], withdegg<d -1,
gx)= ):fz"ol a;x',a;€Z forall0<si<d-1.

Finally, f°(@Q) < f*@Q c f"HQ)cQ,forn=1.

For any x € Q, one can uniquely write x = %, with

1(x),v(x) € Z, and v(x) > 0, ged(p(x),v(x)) = 1. Take now
d-11g:1+2N
M= ————Zl:o lI lil +1,and
a

Mi={x€Q; xI>M, Fi={xeQ;v(x)>da’}.

Now, (Q\ %) N (Q\.#) is obviously finite; take m to be its
cardinality.

For x € # one has |f(x)| = [x|+1 > M (see Lemma 1),
hence f(x) € .#. Then |f"(x)| = |x| + n. For x € & one has
v(f(x)) = v(x)+1 > a? (see Lemma 2), hence f(x) € . Then
v(f*(x) = v(x) +n.

Take x € f“(Q), and take n large enough. Then we will
have x € f"(Q), hence there will exist x, € Q such that
fMxn) = x. If f¥(x,) € A for n—k > |x|, then |x| =
LGl = 1 FP (R )] 2 1% ()| + (n = k) > |x], absurd.
If fk(x,,) € & for n—k > v(x), then v(x) = v(f*(x,) =
v(f”‘k(fk(xn))) 2 v(fk(xn)) +(n— k) > v(x), absurd.

Take n large enough so that n > m + max(|x|,v(x)). One
then has fk(xn) E@\F)INQ\ L), for 0 < k < m, there-
fore there will exist 0 < i < j < m such that fi(xn) = fj(x,,),
therefore f"(xn) = f¥(x,) for some i < k < j, hence x =
) = fE(xn) € (Q\F) N (@Q\ L)

This implies f*(Q) € (Q\ &) N (Q\.#), thus a finite set. W

Lemma 1. For x€ # onehas |f(x)| = |x|+1> M.

S T4 as x4 !
N

Proof. Clearly then |x| > M > 1. Now '“lll\’,"d

L& alix’ lgx)l

|x1% + x4 > ==0r— + | x|+ 1 = £2= + | x|+ 1. It follows that
4 d
f(o)] = |ZEED | 5 el D15 5 415> M. O

Lemma 2. For x € & one has v(f(x)) = v(x) + 1 > a?.

Proof For x € & one can write f(x) = —— (au(x)?

Nv(x)4
v(x)z) = ifﬁjfcgg;, with z = v(x)d‘lg(x) € Z. Now, for e

ged(v(x), a), one has v(x) = er, a = eb, with ged(r, b) = 1.

Then it follows that § = ged(au(x)? + v(x)z, Nv(x)%) <
N-ged(ebu(x)%+erz,e?r?) = Ne-ged (bu(x)%+rz,e% 1 r9) =
Ne-ged(bu(x)? + rz,e?™1), since from previous relations
ged(bu(x),r) = 1. Lastly § < Ne-gcd(bu(x)? + rz,e? 1) <
Nee? ! = Ne? < Nja|%.

d d
Therefore v(f(x)) = N—‘}-’ﬁ)— > % > v(x), since v(x) >

az= Ial'd"i_l. It follows that v(f(x)) = v(x) + 1 > a?. O

While Lemma 1 is classical, Lemma 2 is somewhat more
computational, even if readily intuitive (it may be shown,
with not more trouble, that x € f(Q) implies v(x) | a, thus
allowing for easier computation of f“(Q)).

+

Remarks.

1. For deg f = 1, one has f(Q) = Q, therefore f“(Q) = Q.
On the other hand, replacing @ with Z allover, results in a
much simpler statement (use Lemma I only, or see point 3).

2. If we use the (quite readily established) result that
FUFP@Q) = f°(Q), it follows that the restriction of f to
f“(Q) is a permutation (hence a product of cycles) of this
finite set. On the other hand, any such cycle clearly belongs
to f“(Q); thus the only orbits for f are finitely many, among
the elements of f“(Q).

Using a Lagrange interpolation polynomial, one can build
as large a finite orbit as wanted. However, all orbits then
turn out to be fixed points for some iterate f/*@! Con-
versely, for any nonempty finite set Q ¢ @, we can build
the polynomial f(x) = [] (x— q)? + x, for which f*(@Q) = Q,

qeQ
since Q € f“(Q), whileforx € f*(Q) onehasx < f(x)<--- =
fIF*@0(x) = x, hence x = f(x), whence x € Q.

3. The problem 5 at IMO 2006 (Slovenia) proved that, for
feZ[x]withdegf >1, f has at most deg f fixed points for
n =1 or 2 (and no new fixed points for n > 2), which under
this interpretation translates into | f“(Z)| < deg f.

According with the above, if f is monic, then f*(Q) c Z,
hence the same result holds.[4]

However, polynomial f(x) = -;-(x —2)(x - 3) has fixed
points 1 and 6, and length-2 orbit (0,3) (computable to
f¥(Q) =10,1,3,6}), showing the fact that the above result for
Z stands no more. Also, polynomial f(x) = i(x2 —29) hasa
length-3 orbit (5,—1,—7) (example by TIMO ERKAMA).[5]

4. As for the situation at hand, a simple corollary states
A sequence (xp)n=1 of rational numbers, such that x, =
f(xns1), is periodic.[6] (The proof is that clearly then the
terms of the sequence all belong to the finite set f*(Q),
whence the claim of its periodicity.)
END

[1] Certainly all computations are irrelevant — the idea matters.

[2] To be found in [DIESTEL, R., Graph Theory, Springer-Verlag,
(2000)], Proposition 1.4.1. We chose to include its proof.

[3] The exactly same argument works in the d-dimensional space,
for a set of dn + 1 latticeal points; then the maximal possible
number of vectors will be (d2 — dyn? + 2dn + 1, with a model
made by the origin O, and n points, at distances 1,2,...,n from
origin, on each axis of the coordinate system.

[4] This is a corollary to a theorem by NARKIEWICZ (see also the
seminal theorems by NORTHCOTT).

[5] Such topics are studied by discrete dynamic systems theory,
closely related with the study of MANDELBROT and JULIA sets;
also FEIGENBAUM constant, attractors, fractals, chaos theory.

[6] For f(x) = x? itis said to be an old China TST problem.
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