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SHORT HISTORY AND SYSTEM

Mathematical competitions in Serbia have been held since 1958. In the first few
years only republic competitions within the former Yugoslavia, which Serbia was
a part of, were held. The first Federal Mathematical Competition in Yugoslavia
was held in Belgrade in 1960, and since then it has been held regularly every year,
skipping only 1999 for a non-mathematical reason we prefer not to talk about here.
The system has suffered relatively few changes. The earliest Federal Competitions
were organized for 3rd and 4th grades of high school only; 2nd grade was added
in 1970, and 1st grade in 1974. Since 1982, 3rd and 4th grades compose a single
category. After the breakdown of the old Yugoslavia in 1991, the entire system was
continued in the newly formed FR Yugoslavia, later renamed Serbia and Montene-
gro. The separation of Montenegro finally made the federal competition senseless
as such. Thus, starting with 2007, the federal competition and team selection exam
are replaced by a two-day Serbian Mathematical Olympiad.

Today a mathematical competition season in Serbia consists of four rounds of
increasing difficulty:

• Municipal round, held in early February. The contest consists of 5 problems,
each 20 points worth, to be solved in 3 hours. Students who perform well
qualify for the next round (50-60 points are usually enough).

• Regional round, held in late February in the same format as the municipal
round. Each student’s score is added to that from the municipal round.
Although the number of students qualified for the state round is bounded by
regional quotas, a total score of 110-120 should suffice.

• State (republic) round, held in late March in a selected town in the country.
There are roughly 200 to 300 participants. The contest consists of 5 problems
in 4 hours.

• Serbian Mathematical Olympiad (SMO), held in middle April in a selected
town in the country. The participants are selected through the state round:
26 from A category (distribution among grades: 3+5+8+10), 3 from B cate-
gory (0+0+1+2), plus those members of the last year’s olympic team who did
not manage to qualify otherwise. Six most successful contestants are invited
to the olympic team.

Since 1998, the problems for each grade on the three preliminary rounds are
divided into A category (specialized schools and classes) and B category (others).
A student from B category is normally allowed to work the problems for A category.
On the SMO, all participants do the same problems.
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The Serbian Mathematical Olympiad 2009 for high school students was held in
Novi Sad on April 13–14. There were 31 students from Serbia and 3 guest students
from the Serb entity of Bosnia and Herzegovina taking part on the competition.
The contest was easier than last year in the sense that all problems were fully
solved, with problems 2, 5 and 6 being the more difficult ones. Based on the
results of the competition the team of Serbia for the 26-th Balkan Mathematical
Olympiad and the 50-th International Mathematical Olympiad was selected:

Teodor von Burg Math High School, Belgrade 32 points
Luka Milićević Math High School, Belgrade 22 points
Dušan Milijančević Math High School, Belgrade 21 points
Mihajlo Cekić Math High School, Belgrade 20 points
Vukašin Stojisavljević Math High School, Belgrade 20 points
Stefan Stojanović HS “Svetozar Marković”, Nǐs 17 points

In this booklet we present the problems and full solutions of the Serbian Math-
ematical Olympiad.
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Novi Sad , 13.04.2009.

First Day

In a scalene triangle ABC, α and β respectively denote the interior angles at1.

vertices A and B. The bisectors of these two angles meet the opposite sides of the
triangle at points D and E, respectively. Prove that the acute angle between the

lines DE and AB does not exceed |α−β|
3 . (Dušan Djukić)

Find the smallest natural number which is a multiple of 2009 and whose sum of2.

(decimal) digits equals 2009. (Miloš Milosavljević)

Determine the largest positive integer n for which there exist pairwise different sets3.

S1, S2, . . . , Sn with the following properties:

1◦ |Si ∪ Sj | ≤ 2004 for any two indices 1 ≤ i, j ≤ n, and

2◦ Si ∪ Sj ∪ Sk = {1, 2, . . . , 2008} for any 1 ≤ i < j < k ≤ n. (Ivan Matić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SERBIAN MATHEMATICAL OLYMPIAD

for high school students

Novi Sad, 14.04.2009.

Second Day

4. For any n ∈ N, denote by An the set of permutations (a1, a2, . . . , an) of set {1, 2,
. . . , n} satisfying

k | 2(a1 + a2 + · · ·+ ak), for each 1 ≤ k ≤ n.

Compute the number of elements of An. (Vidan Govedarica)

5. Let x, y, z be arbitrary positive numbers such that xy+ yz+ zx = x+ y+ z. Prove
that

1

x2 + y + 1
+

1

y2 + z + 1
+

1

z2 + x+ 1
≤ 1.

When does equality occur? (Marko Radovanović)

6. The incircle k of a scalene triangle ABC is centered at S and tangent to the sides
BC, CA, AB in points P , Q, R, respectively. Lines QR and BC intersect at point
M . A circle passing through B and C is tangent to k at point N . The circumcircle
of triangle MNP meets the line AP at point L different from P . Prove that the
points S, L and M are collinear. (Djordje Baralić)

Time allowed: 270 minutes.
Each problem is worth 7 points.
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SOLUTIONS

Denote by γ the angle at C, and by a, b, c the corresponding sides of 4ABC. We1.

assume without loss of generality that α > β. Let F be the intersection of lines

DE and AB and let ϕ be the angle
between the two lines. By the known
property of angle bisectors, we have
BD
DC

= c
b

and CE
EA

= a
c
, and consequently

BD = ac
b+c , DC = ab

b+c , CE = ab
a+c and

EA = bc
a+c

. Now the Menelaus theorem A B

C

D
E

F

α βϕ

applied on line DE and triangle ABC gives us AF = bc
a−b and FB = ac

a−b .

The sine theorem in triangles FEA and FDB gives us

sin(α− ϕ)

sinϕ
=

sin ^FEA

sin ^EFA
=
FA

EA
=

bc
a−b
bc
a+c

=
a+ c

a− b
and

sin(β + ϕ)

sinϕ
=

sin ^FDB

sin ^DFB
=
FB

DB
=

ac
a−b
ac
b+c

=
b+ c

a− b
,

from which we obtain sinϕ = sin(α − ϕ) − sin(β + ϕ) = 2 sin α−β−2ϕ
2

cos α+β
2

<
sin(α − β − 2ϕ) and therefore ϕ < α − β − 2ϕ, which is equivalent to the desired
inequality.

Since 2009 = 223 · 9 + 2, the required number has at least 224 digits. We shall2.

consider the possible 224-digit numbers x = c223c222 . . . c1c0. Clearly c223 ≥ 2.
Also, if c223 = 2 then c222 = · · · = c0 = 9, so x = 3 · 10223 − 1 ≡ 3 · 10 − 1 ≡ 1
(mod 7) is not divisible by 2009 = 72 · 41.

Suppose that c223 = 3. Then exactly one digit ci, i = 0, . . . , 222 is equal to 8, while
the others are equal to 9, so

x = 3 99 . . .9
︸ ︷︷ ︸

222−i

8 99 . . .9
︸ ︷︷ ︸

i

= 4 · 10223 − 10i − 1.

The order of 10 modulo 41 divides 40, and an easy inspection shows that
105 ≡ 1 (mod 41), so 10i is always congruent to one of 1, 101, 102, 103, 104, i.e.
to 1, 10, 18, 16, 37 (mod 41). Therefore x ≡ 4 · 103 − 10i − 1 ≡ 22 − 10i (mod 41)
is never divisible by 41.

Now suppose that c223 = 4. Among c222, . . . , c0, either two are equal to 8, or one is
equal to 7, while the others are 9. Thus x = 5·10223−10i−10j−1 ≡ 38−(10i+10j)
(mod 41), where i and j may be equal. It is easy to see from above that 10i+10j ≡
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38 (mod 41) if and only if one of (i, j) ≡ (0, 4) or (4, 0) (mod 5). In particular,
i 6= j and i, j ≤ 220.
Next we assume that j = 220 and i ≡ 4 (mod 5). Now we only need to choose i,
if possible, so that 72 | x. By Euler’s theorem, 1 ≡ 10ϕ(49) = 1042 (mod 49), and
since 10k ≡ 10, 2, 20, 8, 31, 30, 48 for k = 1, 2, 3, 6, 7, 14, 21 respectively, we deduce
that the order of 10 modulo 49 equals 42. We have x = 5 · 10223−10220−10i−1 ≡
5 · 1013 −1010 −10i−1 ≡ 31−10i (mod 49), so 49 | x if and only if 10i ≡ 31 ≡ 107

(mod 49), i.e. i ≡ 7 (mod 42). The last condition together with i ≡ 4 (mod 5)
yields i ≡ 49 (mod 210), so the only possibility is i = 49. It follows that the
required number is

4998 9 . . .99
︸ ︷︷ ︸

170

8 99 . . .9
︸ ︷︷ ︸

49

.

3. Each Si has at most 2003 elements. Indeed, if some |Si| = 2004, then Sj ⊂ Si for
all j, which is impossible. Consider

G{i,j} = {1, 2, . . . , 2008} \ (Si ∪ Sj) for 1 ≤ i, j ≤ n.

Then |G{i,j}| > 4 and G{i,j} ⊆ Sk for any pairwise distinct indices i, j, k, and
G{i,j} ∩ G{k,l} ⊆ Sk ∩ G{k,l} = ∅ whenever i 6= j, k 6= l and {i, j} 6= {k, l}. It
follows that

2008 ≥

∣
∣
∣
∣
∣
∣

⋃

1≤i<j≤n

G{i,j}

∣
∣
∣
∣
∣
∣

=
∑

1≤i<j≤n

|G{i,j}| ≥ 4

(
n

2

)

;

hence
(
n
2

)
≤ 501, so n ≤ 32.

Now we shall construct 32 sets satisfying 1◦ and 2◦.
Partition the set {1, 2, . . . , 1984} arbitrarily into 496 (disjoint) 4-element subsets;
denote these subjects G{i,j}, 1 ≤ i < j ≤ 496 in an arbitrary manner. Define

Si = {1, 2, . . . , 2008} \
⋃

j 6=i

G{i,j} for each i = 1, . . . , 32.

Condition 1◦ is automatically satisfied. Moreover, each s ∈ {1, 2, . . . , 2008} belongs
to at most one G{u,v} which is contained in Sr for all r 6= u, v (including at least
one of i, j, k for any distinct i, j, k), so s ∈ Si ∪ Sj ∪ Sk for any i < j < k, which
makes condition 2◦ satisfied as well.

Therefore the largest n satisfying the given conditions is n = 32.

4. Denote by Fn the number of elements of An. Then F1 = 1, F2 = 2, F3 = 6.

Consider any permutation (a1, a2, . . . , an) from An, n > 3. Then n−1 must divide
2(a1 + · · ·+ an−1) = n(n+ 1)− 2an ≡ 2− 2an (mod n− 1), which implies that an
is equal to 1, n+1

2
or n.
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Suppose that an = n−1
2

. Now n− 2 divides 2(a1 + · · ·+ an−2) = n2 − 1− 2an−1 ≡
3− 2an−1 (mod n− 2), so 2an−1 − 3 is divisible by n− 2 and hence must be equal
to n− 2, but then an−1 = n+1

2
= an, which is impossible.

If an = n then (a1, . . . , an) → (a1, . . . , an−1) is a one-to-one correspondence with
the elements of An−1, so there are Fn−1 such permutations.

If an = 1 then (a1 − 1, . . . , an−1 − 1) is a permutation of {1, . . . , n− 1}. It belongs
to An−1 because 2 ((a1 − 1) + · · · + (ak − 1)) = 2(a1 + · · · + ak) − 2k is divisible
by k for k = 1, . . . , n− 1. Again, this gives a one-to-one correspondence with the
elements of An−1, so in this case there are also Fn−1 permutations.

This establishes the recurrence Fn = 2Fn−1 for n > 3, which together with F3 = 6
yields the formula Fn = 3 · 2n−2 for n ≥ 3.

5. The Cauchy-Schwartz inequality for the triples
(
x,

√
y, 1

)
and

(
1,
√
y, z

)
gives us

1
x2+y+1 ≤ 1+y+z2

(x+y+z)2 . Analogously, 1
y2+z+1 ≤ 1+z+x2

(x+y+z)2 and 1
z2+x+1 ≤ 1+x+y2

(x+y+z)2 .

Summing up these three inequalities yields

1

x2 + y + 1
+

1

y2 + z + 1
+

1

z2 + x+ 1
≤ 3 + x+ y + z + x2 + y2 + z2

(x+ y + z)2
= S.

All that remains is to show that S ≤ 1, which is equivalent to

3 + x+ y + z 6 2(xy + yz + zx).

Since xy+ yz+ zx = x+ y+ z, the last inequality reduces to x+ y+ z ≥ 3, which

follows from x+ y + z = xy + yz + zx ≤ (x+y+z)2

3 .
Equality holds only for x = y = z = 1.

6. Let P1 be the image of P under the homothety centered at N that maps k to the

circle BCN . The tangent to circle BCN
at P1 is parallel to the tangent to k at
P , i.e. the line BC, which means that
P1 is the midpoint of the arc BC of cir-
cle BCN . Thus NP bisects ∠CNB,
so BN

CN
= BP

CP
. Since by the Menelaus

theorem we have BM
MC

= BR
RA

· AQ
QC

=
BP
PC

= BN
NC

, line NM is the external bi-
sector of ∠CNB, and consequently N
lies on the circle with diameter MP .

Q

R

M

N

P

L

B C

A

S

P1
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Denote by K the projection of S on AP . Points A,K,Q,R, S lie on the circle
with diameter AS. The inversion Ψ with respect to k maps this circle to line QR,
and also maps the circumcircle of 4SKP to line BC, so Ψ maps K to point M .
Therefore K lies on the line SM and ∠MKP = 90◦. This means that the points
K and L coincide, implying the statement of the problem.

Second solution. Consider the configuration of the problem in the complex plane,
where S is at the origin and k is the unit circle. For any point X , we denote the
corresponding complex number by x. Thus s = 0 and |p| = |q| = |r| = 1.

It is well-known that a point z lies on the line UV with |u| = |v| = 1 if and only
if z + uvz = u + v, and lies on the tangent to k at W with |w| = 1 na jedinichnu
kruzhnicu ako i samo ako je z + w2z = 2w. From these facts we easily compute

m = p(pr+pq−2qr)
p2−rq

and a = 2qr
q+r

, b = 2pr
p+r

, c = 2pq
p+q

.

If O is the center of the circle BCN , we have |n| = 1, o = o/n2 and |o − b| =
|o− c| = |o−n|. Relations |o− b|2 = |o− n|2 and |o− c|2 = |o− n|2 are reduced to
n2(|b|2−1) = o(b+n2b−2n) and n2(|c|2−1) = o(c+n2c−2n), so (|b|2−1)(c+n2c−
2n) = (|c|2−1)(b+n2b−2n). Since |b|2−1 = −(p−r

p+r )
2 and b+n2b−2n = 2(n−p)(n−r)

p+r

and analogous relations hold for c, we obtain (p−r
p+r

)2 2
p+q

(n−q) = (p−q
p+q

)2 2
p+r

(n−r)
(since n 6= p). The solution of this linear equation in n upon simplification becomes

n =
m+ p

p(m+ p)
.

The intersection X of AP and MS satisfies x
x

= m
m

and k−p

k−p
= a−p

a−p =
2rq

r+q
−p

2
r+q

− 1
p

= −m
m

so SM ⊥ AP , i.e. PX ⊥ MX . It remains to prove that L ≡ X , i.e. that X lies
on the circumcircle of 4MPN . From above, this circle must be the circle with
diameter MP , so it suffices to show that N is equidistant from M and P , which is
shown directly from the above formula for n.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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The 26-th Balkan Mathematical Olympiad was held from April 28 to May 4 in
Kragujevac in Serbia. The results of Serbian contestants are given in the following
table:

1 2 3 4 Total
Teodor von Burg 10 10 9 6 35 Gold Medal
Luka Milićević 10 10 1 8 29 Gold Medal

Dušan Milijančević 10 10 2 2 24 Gold Medal
Vukašin Stojisavljević 10 0 4 0 14 Bronze Medal

Mihajlo Cekić 10 10 0 0 20 Silver Medal
Stefan Stojanović 10 0 1 0 11 Bronze Medal

The host country usually sends another 6 contestants as a team B which takes
part unofficially. The results of Serbian team B were as follows:

1 2 3 4 Total
Aleksandar Vasiljković 8 4 3 3 18 Silver Medal

Igor Spasojević 6 3 0 0 9 Bronze Medal

Filip Živanović 10 5 1 0 16 Silver Medal
Radomir Djoković 5 0 1 0 6 Bronze Medal
Stevan Gajović 10 4 3 1 18 Silver Medal
Vukan Levajac 2 0 0 0 2

After the contest, 13 contestants (9 officially + 4 unofficially) with 24-40 points
were awarded gold medals, 33 (15+18) with 15-22 points were awarded silver
medals, and 42 (21+21) with 6-14 points were awarded bronze medals. The most
successful contestant was Teodor von Burg from Serbia with 35 points.

The unofficial ranking of the teams is given below:

Member Countries Guest Teams
1. Serbia 133
2. Turkey 131 Kazakhstan 112
3. Bulgaria 128 Italy 107
4. Romania 96 Azerbaijan 82
5. Moldova 76 Turkmenistan (5) 80
6. Greece 69 France 74
7. FYR Macedonia 59 Serbia B 69
8. Albania 36 United Kingdom 59
9. Bosnia and Herzegovina 33 Brno, Czech Rep. 42

10. Cyprus 22 Tajikistan (2) 30
11. Montenegro 9
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BALKAN MATHEMATICAL OLYMPIAD

Kragujevac , 30.04.2009.

1. Find all integer solutions of the equation

3x − 5y = z2.
(Greece)

2. In a triangle ABC, points M and N on the sides AB and AC respectively are
such that MN ‖ BC. Let BN and CM intersect at point P . The circumcircles
of triangles BMP and CNP intersect at two distinct points P and Q. Prove that
∠BAQ = ∠CAP . (Moldova)

3. A 9× 12 rectangle is divided into unit squares. The centers of all the unit squares,
except the four corner squares and the eight squares adjacent (by side) to them,
are colored red. Is it possible to numerate the red centers by C1, C2, . . . , C96 so
that the following two conditions are fulfilled:

1◦ All segments C1C2, C2C3, . . .C95C96, C96C1 have the length
√

13;

2◦ The poligonal line C1C2 . . .C96C1 is centrally symmetric? (Bulgaria)

4. Determine all functions f : N → N satisfying

f
(
f(m)2 + 2f(n)2

)
= m2 + 2n2 for all m,n ∈ N.

(Bulgaria)

Time allowed: 270 minutes.
Each problem is worth 10 points.
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SOLUTIONS

1. We start by observing that z must be even, so z2 = 3x − 5y ≡ (−1)x − 1 (mod 4)
is divisible by 4, which implies that x is even, say x = 2t. Then our equation can
be rewritten as (3t − z)(3t + z) = 5y, which means that both 3t − z = 5k and
3t + z = 5y−k for some nonnegative integer k. Since 5k + 5y−k = 2 · 3t is not
divisible by 5, it follows that k = 0 and

2 · 3t = 5y + 1.

Suppose that t ≥ 2. Then 5y + 1 is divisible by 9, which is only possible if y ≡ 3
(mod 6). However, in this case 5y + 1 ≡ 53 + 1 ≡ 0 (mod 7), so 5y + 1 is also
divisible by 7, which is impossible.
Therefore we must have t ≤ 1, which yields a (unique) solution (x, y, z) = (2, 1, 2).

2. Since the quadrilateralsBMPQ and CNPQ are cyclic, we have ∠BQN = ∠BQP+
∠PQN = ∠AMC + ∠MCA = 180◦ −
∠CAB, so ABQN is cyclic as well.
Hence sin ∠BAQ

sin ∠NAQ
= BQ

NQ
. Moreover, tri-

angles MBQ and CNQ are similar, so

sin ∠BAQ

sin ∠CAQ
=
BQ

NQ
=
BM

CN
=
AB

AC
.

On the other hand, if AP meets BC at
A1, then by the Cheva theorem BA1

A1C
=

A

B C

M N

P

Q

A1

BM
MA

· AN
NC

= 1, so A1 is the midpoint of BC and

sin ∠CAP

sin ∠BAP
=
AB

AC
· AC ·AA1 sin∠CAP

AB ·AA1 sin∠BAP
=
AB

AC
· S4CAA1

S4BAA1

=
AB

AC
.

Therefore, if we denote ∠CAP = ϕ, ∠BAQ = ψ and ∠BAC = α, we have
sinψ

sin(α−ψ)
= sinϕ

sin(α−ϕ)
, which is equivalent to sinψ sin(α−ϕ) = sinϕ sin(α−ψ). The

addition formulas reduce the last equality to 0 = sinα(sinϕ cosψ − sinψ cosϕ) =
sinα sin(ϕ− ψ), from which we conclude that ψ = ϕ, as desired.

3. Place the given rectangle into the coordinate plane so that the center of the square
at the intersection of i-th column and j-th row has the coordinates (i, j). Suppose
that a desired numeration of the red points exists; it corresponds to a path, i.e. a
closed poligonal line consisting of 96 segments of length

√
13, passing through each

red point exactly once. Note that points (i, j) and (k, l) are adjacent in the path
if and only if {|i− k|, |j − l|} = {2, 3}.
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The center of symmetry must be at point C(5 1
2
, 5). Consider the points A(2, 2),

B(11, 8). These two points are symmetric with respect to C and divide the path

into two parts γ1 and γ2. Note that,
if the rectangular board is colored al-
ternately white and black (like a chess-
board), A and B are of different colors,
and each segment connects two squares
of different colors. It follows that each
of γ1, γ2 consists of an odd number of
segments. Thus these two parts are of
different lengths and cannot be sym-
metric to each other. Therefore each
of γ1, γ2 is centrally symmetric itself.

bq
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Being of an odd length, each of the parts γ1, γ2 must contain a segment which
is centrally symmetric with respect to C. There are only two such segments -
one connecting (5, 4) and (8, 6), and one connecting (5, 6) and (8, 4), so these two
segments must be parts of our path. Moreover, point (2, 2) is connected with only
two points, namely (4, 5) and (5, 4), so these three points are directly connected.
Analogous conclusions can be made about points (2, 8), (11, 2) and (11, 8), so the
closed path (5, 4)− (2, 2)− (4, 5)− (2, 8)− (5, 6)− (8, 4)− (11, 2)− (9, 5)− (11, 8)−
(8, 6) − (5, 4) is entirely contained in our path, which is clearly a contradiction.

4. We start by observing that f is injective. From the known identity

(a2 + 2b2)(c2 + 2d2) = (ac± 2bd)2 + 2(ad∓ bc)2

we obtain f(ac + 2bd)2 + 2f(ad − bc)2 = f(ac − 2bd)2 + 2f(ad + bc)2, assuming
that the arguments are positive integers. Specially, for b = c = d = 1 and a ≥ 3
we have f(a+ 2)2 + 2f(a− 1)2 = f(a− 2)2 + 2f(a+ 1)2. Denoting g(n) = f(n)2

we get a recurrent relation g(a+ 2) − 2g(a+ 1) + 2g(a− 1) − g(a− 2) = 0 whose
characteristic polynomial is (x+ 1)(x− 1)3, which leads to

g(n) = A(−1)n +B + Cn+Dn2. (†)

Substituting m = n in the original equation yields g(3g(n)) = 9n4, which together
with (†) gives us

L = 9n4 = A(−1)3(A(−1)n+B+Cn+Dn2) +B + 3C[A(−1)n +B + Cn+Dn2]
︸ ︷︷ ︸

+ 9D[A(−1)n +B + Cn+Dn2]2 = R.

Since 0 = limn→∞
R−L
n4 = 9D3 − 9, we have D3 = 1 (so D 6= 0); similarly,

0 = limn→∞
R−L
n3 = 18D2C, so C = 0. Moreover, for n = 2k and n = 2k + 1
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respectively we obtain 0 = limk→∞
R−L
(2k)2

= 18D2(A+B) and 0 = limk→∞
R−L

(2k+1)2
=

18D2(−A+B), implying A+B = −A+B = 0; hence A = B = 0.

Finally, g(n) = Dn2, D3 = 1 and g : N → N gives us D = 1, i.e. f(n) = n. It is
directly verified that this function satisfies the conditions of the problem.

Remark. Using limits can be avoided. Since the rigth-hand side in (†) takes only
integer values, it follows that A,B,C,D are rational, so taking suitable multiples
of integers for n eliminates the powers of −1 and leaves a polynomial equality.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Mathematical Competitions in Serbia
http://srb.imomath.com/

::::::::::::

The IMO Compendium Olympiad Archive Mathematical Society of Serbia
http://www.imocompendium.com/ http://www.dms.org.rs/
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The IMO Compendium

This book attempts to gather all the problems appearing on the IMO, as well
as the so-called short-lists from 35 years, a total of 864 problems, all of which
are solved, often in more than one way. The book also contains 1036 problems
from various long-lists over the years, for a grand total of 1900 problems.
In short, The IMO Compendium is an invaluable resource, not only for high-
school students preparing for mathematical competitions, but for anyone who
loves and appreciates math.

Publisher: Springer (2006); Hardcover, 746 pages; Language: English; ISBN: 0387242996

For information on how to order, visit http://www.imocompendium.com/


