Bulgarian Mathematical Olympiad 1993, IV Round

First Day

- 1. Find all functions *f*, defined and having values in the set of integer numbers, for which the following conditions are satisfied:
 - (a) f(1) = 1;
 - (b) for every two whole (integer) numbers *m* and *n*, the following equality is satisfied:

$$f(m+n) \cdot (f(m) - f(n)) = f(m-n) \cdot (f(m) + f(n))$$

- 2. The point *M* is internal point for the triangle *ABC* such that: $\angle AMC = 90^{\circ}$, $\angle AMB = 150^{\circ}$ and $\angle BMC = 120^{\circ}$. Points *P*, *Q* and *R* are centers of circumscribed circles around triangles *AMC*, *AMB* and *BMC*. Prove that the area of triangle *PQR* is bigger than the area of the triangle *ABC*.
- 3. It is given a polyhedral constructed from two regular pyramids with bases heptagons (a polygon with 7 vertices) with common base $A_1A_2A_3A_4A_5A_6A_7$ and vertices respectively the points *B* and *C*. The edges BA_i , CA_i (i = 1, ..., 7), diagonals of the common base are painted in blue or red. Prove that there exists three vertices of the polyhedral given which forms a triangle with all sizes in the same color.

Second day

- 4. Find all natural numbers n > 1 for which there exists such natural numbers a_1, a_2, \ldots, a_n for which the numbers $\{a_i + a_j \mid 1 \le i \le j \le n\}$ forms a full system modulo $\frac{n(n+1)}{2}$.
- 5. Let Oxy is a fixed rectangular coordinate system in the plane. Each ordered pair of points A_1, A_2 from the same plane which are different from O and have coordinates x_1, y_1 and x_2, y_2 respectively is associated with real number $f(A_1, A_2)$ in such a way that the following conditions are satisfied:
 - (a) If $OA_1 = OB_1$, $OA_2 = OB_2$ and $A_1A_2 = B_1B_2$ then $f(A_1, A_2) = f(B_1, B_2)$.
 - (b) There exists a polynomial of second degree F(u, v, w, z) such that $f(A_1, A_2) = F(x_1, y_1, x_2, y_2)$.
 - (c) There exists such a number $\phi \in (0, \pi)$ that for every two points A_1, A_2 for which $\angle A_1 O A_2 = \phi$ is satisfied $f(A_1, A_2) = 0$.
 - (d) If the points A_1, A_2 are such that the triangle OA_1A_2 is equilateral with side 1 then $f(A_1, A_2) = \frac{1}{2}$.

Prove that $f(A_1, A_2) = \overrightarrow{OA_1} \cdot \overrightarrow{OA_2}$ for each ordered pair of points A_1, A_2 .

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović IAT_EX and translation by Borislav Mirchev and Ercole Suppa www.imomath.com

1

6. Find all natural numbers *n* for which there exists set *S* consisting of *n* points in the plane, satisfying the condition:

For each point $A \in S$ there exist at least three points say X, Y, Z from S such that the segments AX, AY and AZ have length 1 (it means that AX = AY = AZ = 1).

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović LATEX and translation by Borislav Mirchev and Ercole Suppa www.imomath.com