Bulgarian Mathematical Olympiad 2005
Regional Round, April 16-17

Grade 9

1. Find all values of the real parameterandb such that the remainder in the
division of the polynomiak* — 3ax® + ax+ b by the polynomiak®1 is equal to
(@2 +1)x+ 3b% (Peter Boyvalenkov)

2. Two tangent circles with cente@ andO; are inscribed in a given angle. Prove
that if a third circle with center on the segmédiO; is inscribed in the angle
and passes through one of the poi@tsand O, then it passes through the other
one too. (Peter Boyvalenkov)

3. Leta andb be integers andt be a positive integer. Prove thatxfandy are
consecutive integers such that

axbky = ab,
then|ab| is a perfeck-th power. (Peter Boyvalenkov)

4. Find all values of the real paramefesuch that the equatign® — px2p+1 |= pl
has four real rootgy, X2, X3 andxs such that

X5+ X5 + X5+ x5 = 20.
(Ivailo Kortezov)

5. Let ABCD be a cyclic quadrilateral with circumcircle The raysﬁ andCB
meet at poinN and the lineNT is tangent tk, T € k. The diagonal#&\C andBD
meet at the centroiB of ANTD. Find the ratioNT : AP. (Ivailo Kortezov)

6. A card game is played by five persons. In a group of 25 peralblike to play
that game. Find the maximum possible number of games whitheplayed if
no two players are allowed to play simultaneously more thareo (Ivailo
Kortezov)
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Grade 10

1. Solve the system

3.4 2L Yy =0
2.4 5.2y L 9¥— 8

(Ivan Landjev)

2. Given a quadrilateradABCD setAB=a, BC =b,CD =c¢, DA=d, AC=eand
BD = f . Prove that:
(@) @+ b?+c?+d?> e+ 2
(b) if the quadrilateraPBCD is cyclic thenja—c| > [e— f]|.
(Stoyan Atanassov)

3. Find all pairs of positive integefsn, n), m > n, such that

[ + mn, mn — n?] + [mn, mn] = 2200°
where[a, b] denotes the least common multipleasoandb.
(lvan Landjev)

4. Find all values of the real parametesuch that the number of the solutions of
the equation
3(5x%a%) — 2x = 2a?(6x1)

does not exceed the number of the solutions of the equation

23 4 6x = (363— 9) \/ 28— :—é ~ (3a—1)212

(Ivan Landjev)

5. LetH be the orthocenter oAABC, M be the midpoint ofAB andH; andH,
be the feet of the perpendiculars frdthto the inner and the outer bisector of
/ACB, respectively. Prove that the poirtis, H, andM are colinear.  (Stoyan
Atanassov)

6. Find the largest possible numb&ihaving the following property: if the num-
bers 12,...,1000 are ordered in arbitrary way then there exist 50 conisecu
numbers with sum not less thén (Ivan Landjev)
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Grade 11
1. Find all values of the real parametesuch that the equation
a(sin2+ 1) + 1= (a3)(sinx+ cosx)
has a solution. (Emil Kolev)

2. On the sides of an acufeABC of area 1 point#¢\; € BC, B; € CAandC; € AB
are chosen so that
/CC1B= ZAAC = /BB1A= o,

where the angle is acute. The segmentg\;, BB; andCC; meet at pointd,
N andP.

(a) Prove that the circumcenter 6fMNP coincides with the orthocenter of

AABC.
(b) Findg, if [MNP] =2—+/3.

(Emil Kolev)

3. Letn be a fixed positive integer. The positive integarb, c andd are less than
or equal ton, d is the largest one and they satisfy the equality

(ab+cd) (bc+ ad) (ac+ bd) = (da)?(db)?(dc)?.

(&) Provethat =a+b-+c.

(b) Find the number of the quadruplgsb, c,d) which have the required prop-
erties.

(Alexander Ivanov)
4. Find all values of the real paramegesuch that the equation
10Ga (3 + &) = 100 g2 (77(4* — 3¥)) + 100 2 8
has a solution. (Emil Kolev)

5. The bisectors oBAC, ZABC and ZACB of AABC meet its circumcircle at
pointsA;, B; andCy, respectively. The sidAB meets the line€;B; andCi Ay
at pointsM andN, respectively, the sidBC meets the lines,C; andA;B; at
pointsP andQ, respectively, and the sid&C meets the line8;A; andB;C; at
pointsR andsS, respectively. Prove that:

(a) the altitude o/ACRQ throughRis equal to the inradius afh ABC;
(b) the linesMQ, NRandSP are concurrent.

(Alexander Ivanov)

6. Prove that amongst any 9 vertices of a regular 26-gon treréhree which are
vertices of an isosceles triangle. Do there exist 8 verticeh that no three of
them are vertices of an isosceles triangle?

(Alexander Ivanov)
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Grade 12

1. Prove that ifa, b andc are integers such that the number

a(ab) + b(bc) + c(ca)
2

is a perfect square, then=b = c. (Oleg Mushkarov)

2. Find all values of the real parameterandb such that the graph of the function
y = x3 + ax+ b has exactly three common points with he coordinate axes and
they are vertices of a right triangle.
(Nikolai Nikolov)

3. Let ABCD be a convex quadrilateral. The orthogonal projection® ain the
lines BC and BA are denoted byA; andC,, respectively. The segmeA;Cy
meets the diagon#C at an interior poinB; such thatDB; > DA;. Prove that
the quadrilaterahBCD is cyclic if and only if

BC , BA _AC
DA; ' DC; DB

(Nikolai Nikolov)

4. The pointK on the edgé\B of the cubeABCDA;B;C;D; is such that the angle
between the linéyB and the planéB;CK) is equal to 60. Find tana, wherea
is the angle between the plan& CK) and(ABC). (Oleg Mushkarov)

5. Prove that any triangle of ared3 can be placed into an infinite band of width
V3. (Oleg Mushkarov)

6. Letmbe a positive integeA={—m,—m+1,....m—1m} andf : A— Abe a
function such thaf (f(n)) = —nfor everyn € A.
(a) Prove that the numbaeris even.
(b) Find the number of all functionk: A — A with the required property.

(Nikolai Nikolov)
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