Chinese IMO Team Selection Test 2007

First Day

1. Points A and B lie on a circle k with center O. Let C be a point outside the circle and let CS and CT be the tangents to the circle. Let M be the midpoint of the smaller arc AB of k. The lines MS and MT intersect AB at E and F respectively. The lines passing through E and F perpendicular to AB intersect OS and OT at X and Y respectively. A line passing through C intersects the circle k at P, Q ($P \in CQ$). Let R be the intersection of MP with AB, and let Z be the circumcenter of $\triangle PQR$. Prove that $X, Y,$ and Z are collinear.

2. A natural number x is called good if it satisfies: $x = p/q > 1$ with $p, q \in \mathbb{N}$, $(p, q) = 1$, and there exist constants α, N such that for any integer $n \geq N$,

$$|\{x^n\} - \alpha| \leq \frac{1}{2(p + q)}.$$

Find all good numbers.

3. There are 63 points on a circle with diameter 20. Let S be the number of triangles whose vertices are three of the 63 points and side lengths are ≥ 9. Find the maximum of S.

Second Day

4. Find all functions $f : \mathbb{Q}^+ \to \mathbb{Q}^+$ such that

$$f(x) + f(y) + 2xyf(xy) = \frac{f(xy)}{f(x+y)}.$$

5. Let x_1, \ldots, x_n $(n > 1)$ be real numbers satisfying $A = |\sum_{i=1}^n x_i| \neq 0$ and $B = \max_{1 \leq i < j \leq n} |x_j - x_i| \neq 0$. Prove that for any n vectors $\vec{\alpha}_i$ in the plane, there exists a permutation (k_1, \ldots, k_n) of the numbers $1, 2, \ldots, n$ such that

$$\left| \sum_{i=1}^k x_{k_i} \vec{\alpha}_{k_i} \right| \geq \frac{AB}{2A + B} \max_{1 \leq i \leq n} |\vec{\alpha}_i|.$$

6. Let n be a positive integer and let $A \subseteq \{1, 2, \ldots, n\}$. Assume that for any two numbers $x, y \in A$ the least common multiple of x and y is not greater than n. Show that $|A| \leq 1.9\sqrt{n} + 5$.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović
www.imomath.com