## 44-th Federal Mathematical Competition of Serbia and Montenegro 2004

# High School

Šabac, April 17, 2004

*Time allowed 4 hours. Each problem is worth 25 points.* 

#### 1-st Grade

- 1. Find all pairs of positive integers (a,b) such that  $5a^b b = 2004$ .
- 2. In a triangle *ABC*, points *D* and *E* are taken on rays *CB* and *CA* respectively so that  $CD = CE = \frac{AC + BC}{2}$ . Let *H* be the orthocenter of the triangle, and *P* be the midpoint of the arc *AB* of the circumcircle of *ABC* not containing *C*. Prove that the line *DE* bisects the segment *HP*.

(R. Stanojević)

3. If a, b, c are positive numbers such that abc = 1, prove the inequality

$$\frac{1}{\sqrt{b+\frac{1}{a}+\frac{1}{2}}} + \frac{1}{\sqrt{c+\frac{1}{b}+\frac{1}{2}}} + \frac{1}{\sqrt{a+\frac{1}{c}+\frac{1}{2}}} \ge \sqrt{2}.$$
(R. Stanojević)

4. A set *S* of 100 points, no four in a plane, is given in space. Prove that there are no more than  $4 \cdot 101^2$  tetrahedra with the vertices in *S*, such that any two of them have at most two vertices in common.

(R. Doroslovački)

#### 2-nd Grade

1. Suppose that a, b, c are positive numbers such that  $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$  is an integer. Show that *abc* is a perfect cube. (D. Dukić)

- 2. Let *r* be the inradius of an acute triangle. Prove that the sum of the distances from the orthocenter to the sides of the triangle does not exceed 3*m*. *Stanojević*)
- 3. Let *M*,*N*,*P* be arbitrary points on the sides *BC*,*CA*,*AB* respectively of an acuteangled triangle *ABC*. Prove that at least one of the following inequalities is satisfied:

$$NP \ge \frac{1}{2}BC, \quad PM \ge \frac{1}{2}CA, \quad MN \ge \frac{1}{2}AB.$$
 (D. Dukić)



The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 4. Baron Minchausen talked to a mathematician. Baron said that in his country from any town one can reach any other town by a road. Also, if one makes a circular trip from any town, one passes through an odd number of other towns. By this, as an answer to the mathematician's question, baron said that each town is counted as many times as it is passed through. Baron also added that the same number of roads start at each town in his country, except for the town where he was born, at which a smaller number of roads start. Then the mathematician said that baron lied. How did he conclude that? (V. Baltić)

### 3-rd and 4-th Grades

- 1. In a triangle *ABC* of the area *S*, point *H* is the orthocenter, *D*, *E*, *F* are the feet of the altitudes from *A*, *B*, *C*, and *P*, *Q*, *R* are the reflections of *A*, *B*, *C* in *BC*, *CA*, *AB*, respectively. The triangles *DEF* and *PQR* have the same area *T*. Given that  $T > \frac{3}{5}S$ , prove that T = S. (*R. Stanojević*)
- 2. The sequence  $(a_n)$  is determined by  $a_1 = 0$  and

$$(n+1)^3 a_{n+1} = 2n^2(2n+1)a_n + 2(3n+1)$$
 for  $n \ge 1$ .

Prove that infinitely many terms of the sequence are positive integers.

(Đ. Krtinić)

- 3. Let  $A = \{1, 2, 3, ..., 11\}$ . How many subsets *B* of *A* are there, such that for each  $n \in \{1, 2, ..., 8\}$ , if *n* and n + 2 are in *B* then at least one of the numbers n + 1 and n + 3 is also in *B*? (*R. Doroslovački*)
- 4. The sequence  $(a_n)$  is given by  $a_1 = x \in \mathbb{R}$  and  $3a_{n+1} = a_n + 1$  for  $n \ge 1$ . Set

$$A = \sum_{n=1}^{\infty} \left[ a_n - \frac{1}{6} \right], \quad B = \sum_{n=1}^{\infty} \left[ a_n + \frac{1}{6} \right].$$

Compute the sum A + B in terms of x.

(Đ. Krtinić)



2

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com