41-st Yugoslav Federal Mathematical Competition 2001
High School
Kragujevac, April 21, 2001

Time allowed 4 hours.
Each problemis worth 25 points.

1-st Grade
1. Let ABCD and A;B;C1D; be convex quadrangles in a plane, such #at=
A1B;, BC = B1Cy, CD = C;D; andDA = D;A;. Given that diagonal8C and

BD are perpendicular to each other, prove that the same haldgigonalsA;Cy
and B1D;.

2. Given are 5 segments, such that from any three of them eonfooa a triangle.
Prove that from some three of them one can form an acute-étrigagle.

3. Letpy, p2,...,pn (N> 3) be the smallest n prime numbers. Prove that

1,1 1, 1 1
p?  p3 Pi  pip2--pn 2

4. There aren coins in the pile. Two players play a game by alternatelygrening
a move. A move consists of taking 5, 7 or 11 coins away from ile f'he
player unable to perform a move loses the game. Which plajerene playing
first or second - has the winning strategy if:

(@) n=2001;
(b) n=5000?

2-nd Grade

1. LetS= {x*+2y?| x,y € Z}. If ais an integer with the property thaa®elongs
to S, prove that them belongs tcSas well.

2. Vertices of a squarABCD of side 254 lie on a sphere. Parallel lines passing
through pointsA, B,C and D intersect the sphere at poindg,B;,C; and Dy,
respectively. Given thadA; = 2, BB; = 10,CC; = 6, determine the length of
the segmenbD;.

3. Determine all positive integersfor which there is a coloring of all points in
space so that each of the following conditions is satisifed:
(i) Each pointis painted in exactly one color.
(i) Exactly ncolors are used.
(i) Each line is painted in at most two different colors.
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4. LetSbe the set of alh—tuples(xi, Xy, ..., Xn) Of real numbers, with the property
X1+ X2 X1+Xo+...+Xn

that among the numbexs, > ; the least is equal to 0,
and the greatest is equal to 1. Determine
max max (x —x;) and min _max (X — Xj).
(X1,---%n)€S1<i, j<n (X1,+--%n)€S1<i,j<n

3-rd and 4-th Grades

1. Find all solutions of the equatio®i +y = y*+ x in the positive integers.

2. Letxy,Xo, ..., X001 b€ positive numbers such that

2 2 2

2.2, % .5 X1 -
X 2x1+?+§+---+ =g for2 <i <2001
2001 X
Prove that > 1.999
& Xat X+ Xio1

3. Letk be a positive integer ang, be the number of sequences of length 2001, all
members of which are elements of the §@11,2,...,2k+ 1}, and the number
of zeroes among these is odd. Find the greatest power of wliilesNy.

4. ParallelogranABCD is the base of a pyrami8ABCD. Planes determined by
trianglesASC and BSD are mutually perpendicular. Find the area of the side
ASD, if areas of side&\SB,BSC andCSD are equal tox, y andz, respectively.
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