Vietnamese IMO Team Selection Test 1996

First Day – May 17

1. Let \(S \) be a set of \(3n \) points in the plane \((n > 1) \), no three of which are collinear, such that the distance between any two is at most 1. Prove that one construct \(n \) pairwise disjoint triangles whose all vertices are in \(S \) and whose sum of the areas is less than \(1/2 \).

2. For a positive integer \(n \), let \(f(n) \) be the greatest integer for which \(2^{f(n)} \) divides the number

\[
\sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n}{2i+1} 3^i.
\]

Find all positive integers \(n \) such that \(f(n) = 1996 \).

3. If \(a, b, c \) are real numbers with the sum 1, find the minimum value of

\[
f(a, b, c) = (a + b)^4 + (b + c)^4 + (c + a)^4 - \frac{4}{7}(a^4 + b^4 + c^4).
\]

Second Day – May 18

4. For any point \(M \) in the plane of a triangle \(ABC \), let \(f(M), g(M), h(M) \) be the reflections of \(M \) in \(BC, CA, AB \), respectively. Determine all points \(M \) for which the segment with endpoints at \(M \) and \(f(g(h(M))) \) has the minimum length \(d(f, g, h) \). Also prove that \(d(f, g, h) = d(f, h, g) = \cdots = d(h, g, f) \).

5. Some persons are invited to a party. None of the persons is acquainted to exactly 56 others and any two non-acquainted persons have a common acquaintance among the other persons. Can the number of invited persons be equal to 65?

6. A sequence \((x_n) \) is defined by \(x_0 = \sqrt{1996} \) and \(x_{n+1} = \frac{a}{1 + x_n} \) for \(n \geq 0 \), where \(a \) is a real number. Find all values of \(a \) for which \((x_n) \) has a finite limit as \(n \) tends to infinity.