Vietnamese IMO Team Selection Test 2003

First Day

1. Four positive integers \(m, n, p, q \) with \(p < m \) and \(q < n \) are given. Consider the points \(A(0,0), B(p,0), C(m,q) \) and \(D(m,n) \) in the coordinate plane. Consider the paths \(f \) from \(A \) to \(D \) and \(g \) from \(B \) to \(C \), consisting of unit steps going to the right or upwards. Let \(S \) be the number of couples \((f,g)\) such that \(f \) and \(g \) have no common points. Prove that

\[
S = \left(\frac{m+n}{n} \right) \left(\frac{m+q-p}{q} \right) - \left(\frac{m+q}{q} \right) \left(\frac{m+n-p}{n} \right).
\]

2. Let \(A_0, B_0, C_0 \) respectively be the midpoints of the altitudes \(AH, BK \) and \(CL \) of a non-equilateral triangle \(ABC \). Let \(O \) be the circumcenter and \(I \) the incenter of the triangle. The incircle of \(\triangle ABC \) touches \(BC \) at \(D \), \(CA \) at \(E \), and \(AB \) at \(F \). Show that the four lines \(A_0D, B_0E, C_0F \) and \(OI \) are concurrent.

3. A function \(f \) satisfies \(f(0,0) = 5^{2003} \), \(f(0,n) = 0 \) for all \(n \in \mathbb{N} \), and

\[
f(m,n) = f(m-1,n) - 2 \left[\frac{f(m-1,n-1)}{2} \right] + \left[\frac{f(m-1,n+1)}{2} \right]
\]

for all integers \(m > 0 \) and \(n \). Show that there exists a positive integer \(M \) such that \(f(M,n) = 1 \) for all integers \(n \) with \(|n| \leq \frac{(5^{2003} - 1)}{2} \) and \(f(M,n) = 0 \) for all other integers \(n \).

Second Day

4. Let \(M, N, P \) be the midpoints of the sides \(BC, CA, AB \) respectively of a triangle \(ABC \), and let \(M_1, N_1, P_1 \) be the points on the perimeter of the triangle such that each of the lines \(MM_1, NN_1, PP_1 \) bisects the perimeter.

 (a) Prove that the lines \(MM_1, NN_1, PP_1 \) have a common point \(K \).

 (b) Show that at least one of the ratios \(KA/BC, KB/CA, KC/AB \) is not less than \(1/\sqrt{3} \).

5. Let \(A \) be the set of all permutations of the numbers \(1, 2, \ldots, 2003 \) that fix no proper subset of \(\{1, \ldots, 2003\} \). For each permutation \(a = (a_1,a_2,\ldots,a_{2003}) \in A \), denote

\[
d(a) = \sum_{k=1}^{2003} (a_k - k)^2.
\]

 (a) Find the minimum value \(d_0 \) of \(d(a) \).

 (b) Find all permutations \(a \in A \) for which \(d(a) = d_0 \).

6. Prove that for any positive integer \(n \), the number \(2^n + 1 \) has no prime divisors of the form \(8k - 1 \), where \(k \in \mathbb{N} \).