1. Solve the system of equations in x, y, z:

\[
\begin{align*}
 x^3 + 3x - 3 + \ln(x^2 - x + 1) &= y; \\
 y^3 + 3y - 3 + \ln(y^2 - y + 1) &= z; \\
 z^3 + 3z - 3 + \ln(z^2 - z + 1) &= x.
\end{align*}
\]

2. Let ABC be a triangle and let A', B', C' be points symmetric to A, B, C with respect to BC, CA, AB, respectively. Find the necessary and sufficient condition for $\triangle ABC$ so that $\triangle A'B'C'$ is equilateral.

3. Given $0 < a < 1$, a sequence (x_n) is defined by $x_0 = a$ and

\[
x_n = \frac{4}{\pi^2} \left(\arccos x_{n-1} + \frac{\pi}{2} \right) \arcsin x_{n-1}, \quad \text{for } n = 1, 2, \ldots
\]

Prove that this sequence converges and find its limit.

Second Day – March 3

4. Let be given a convex polygon $A_0A_1 \ldots A_n$ ($n > 2$). Initially, there are n stones at A_0. In each move we can choose two vertices A_i and A_j (not necessarily different), take a stone from each of them and put a stone onto a vertex adjacent to A_i and onto a vertex adjacent to A_j. Find all values of n such that after finitely many such moves we can achieve that each vertex except A_0 contains exactly one stone.

5. A sphere with center O and radius r is given. Two planes π and θ passing through O, perpendicular to each other, intersect the sphere in circles T_π and T_θ, respectively. Find the locus of the orthocenter H of an orthogonal tetrahedron $ABCD$ (i.e. with $AB \perp CD, AC \perp BD$ and $AD \perp BC$) with A on T_θ and B, C, D on T_π.

6. Do there exist polynomials $P(x), Q(x), T(x)$ with positive integer coefficients such that

\[
T(x) = (x^2 - 3x + 3)P(x), \\
P(x) = \left(\frac{1}{20} x^2 - \frac{1}{15} x + \frac{1}{12} \right) Q(x).
\]