27-th Vietnamese Mathematical Olympiad 1989

First Day

1. Let n and N be natural number. Prove that for any α, $0 \leq \alpha \leq N$, and any real x, it holds that
 \[
 \left| \sum_{k=0}^{n} \frac{\sin((\alpha + k)x)}{N+k} \right| \leq \min \left((n+1)|x|, \frac{1}{N|\sin \frac{\pi}{2}|} \right).
 \]

2. The Fibonacci sequence is defined by $F_1 = F_2 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for $n > 1$. Let $f(x) = 1985x^2 + 1956x + 1960$. Prove that there exist infinitely many natural numbers n for which $f(F_n)$ is divisible by 1989. Does there exist n for which $f(F_n) + 2$ is divisible by 1989?

3. A square $ABCD$ of side length 2 is given on a plane. The segment AB is moved continuously towards CD until A and C coincide with C and D respectively. Let S be the area of the region formed by the segment AB while moving. Prove that AB can be moved in such a way that $S < \frac{5\pi}{6}$.

Second Day

4. Are there integers x, y, not both divisible by 5, such that
 \[x^2 + 19y^2 = 198 \cdot 10^{1989}?
 \]

5. The sequence of polynomials $(P_n(x))$ is defined inductively by $P_0(x) = 0$ and $P_{n+1}(x) = P_n(x) + \frac{x-P_n(x)^2}{2}$. Prove that for any $x \in [0,1]$ and any natural number n it holds that
 \[0 \leq \sqrt{x}-P_n(x) \leq \frac{2}{n+1}.
 \]

6. Let be given a parallelepiped $ABCD' A'B'C'D'$. Show that if a line d intersects three of the lines AB', BC', CD', DA', then it intersects also the fourth line.