1. Determine the number of solutions of simultaneous equations

\[x^2 + y^3 = 29, \]
\[\log_3 x \cdot \log_2 y = 1. \]

2. Given a triangle with acute angle \(\angle BEC \), let \(E \) be the midpoint of \(AB \). Point \(M \) is chosen on the opposite ray of \(EC \) such that \(\angle BME = \angle ECA \). Denote by \(\theta \) the measure of \(\angle BEC \). Express \(MC/AB \) in terms of \(\theta \).

3. Let \(m = 2007^{2008} \). How many natural numbers \(n \) are there such that \(n < m \) and \(n(2n+1)(5n+2) \) divides \(m \)?

4. The sequence of real number \((a_n) \) is defined by

\[a_1 = 0, \quad a_2 = 2, \quad a_{n+2} = 2^{-a_n} + \frac{1}{2}, \quad \text{for all } n = 1, 2, 3, \ldots \]

Prove that the sequence has a limit as \(n \) approaches \(+\infty \). Determine the limit.

5. What is the total number of natural numbers divisible by 9 the number of digits of which does not exceed 2008 and at least two of the digits are 9’s?

6. Let \(x, y, z \) be distinct non-negative real numbers. Prove that

\[\frac{1}{(x-y)^2} + \frac{1}{(y-z)^2} + \frac{1}{(z-x)^2} \geq \frac{4}{xy+yz+zx}. \]

When does equality hold?

7. Let \(ABC \) be a triangle with altitude \(AD \), line \(d \) is perpendicular to \(AD \), and \(M \) is a variable point on \(d \). Let \(E, F \) be the midpoints of \(MB, MC \). The line through \(E \) perpendicular to \(d \) intersects \(AB \) at \(P \), the line through \(F \) perpendicular to \(d \) meets \(AC \) at \(Q \). Prove that the line through \(M \) perpendicular to \(PQ \) has a fixed point as \(M \) varies on the line \(d \).