43-rd Vietnamese Mathematical Olympiad 2005

First Day

1. The real numbers \(x \) and \(y \) satisfy the condition
\[
x - 3\sqrt{x+1} = 3\sqrt{y+2} - y.
\]
Find the maximum and minimum values of \(P = x + y \).

2. Points \(A \) and \(B \) are given on a circle with center \(O \) and radius \(R \) so that \(O \) does not lie on \(AB \). Let \(C \) be a variable point on the circle, distinct from \(A \) and \(B \). Circle \(O_1 \) through \(A \) touches \(BC \) at \(C \), and circle \(O_2 \) through \(B \) touches \(AC \) at \(C \). Circles \(O_1 \) and \(O_2 \) meet at \(C \) and \(D \).

(a) Prove that \(CD \leq R \).

(b) Prove that all lines \(CD \) pass through a fixed point.

3. Let \(A_1A_2 \ldots A_8 \) be a convex octagon with no three diagonals concurrent. We call intersections of its diagonals buttons, and convex quadrilaterals determined by four vertices of the octagon sub-quadrilaterals. Find the smallest \(n \) for which it is possible to color \(n \) buttons so that for all distinct \(i,k \in \{1, \ldots, 8\} \) number \(s(i,k) \) is the same, where \(s(i,k) \) denotes the number of sub-quadrilaterals with two vertices at \(A_i,A_k \) whose diagonals meet at a colored button.

Second Day

4. Find all functions \(f : \mathbb{R} \rightarrow \mathbb{R} \) satisfying the condition
\[
f(f(x-y)) = f(x)f(y) - f(x) + f(y) - xy \quad \text{for all} \ x, y.
\]

5. Find all triples of natural numbers \((x, y, n) \) such that \(x! + y! = 3^n \).

6. The sequence \((x_n) \) is defined by \(x_1 = a \in \mathbb{R} \) and
\[
x_{n+1} = 3x_n^3 - 7x_n^2 + 5x_n \quad \text{for} \ n = 1, 2, 3, \ldots
\]
Find all \(a \) for which \((x_n) \) has a finite limit when \(n \rightarrow \infty \) and determine that limit.