6-th Taiwanese Mathematical Olympiad 1997

Time: 4.5 hours each day.

Part 1 – April 14

1. Let *a* be rational and *b*, *c*, *d* be real numbers, and let $f : \mathbb{R} \to [-1, 1]$ be a function satisfying

$$f(x+a+b) - f(x+b) = c [x+2a+[x] - 2[x+a] - [b]] + d$$

for each x. Show that f is periodic.

- 2. Given a line segment *AB* in the plane, find all possible points *C* such that in the triangle *ABC*, the altitude from *A* and the median from *B* have the same length.
- 3. Let $n \ge 3$ be an integer. Suppose that $a_1, a_2, ..., a_n$ are real numbers such that $k_i = \frac{a_{i-1} + a_{i+1}}{a_i}$ is a positive integer for all *i*. (Here $a_0 = a_n$ and $a_{n+1} = a_1$.) Prove that

$$2n \leq k_1 + k_2 + \dots + k_n \leq 3n.$$

- 4. Let $k = 2^{2^n} + 1$ for some $n \in \mathbb{N}$. Show that k is prime if and only if k divides $3^{\frac{k-1}{2}} + 1$.
- 5. Let ABCD is a tetrahedron. Show that
 - (a) If AB = CD, AC = BD and AD = BC, then the triangles ABC, ABD, ACD, BCD are acute.
 - (b) If the triangles ABC, ABD, ACD, BCD have the same area, then AB = CD, AC = BD, AD = BC.
- 6. Show that every number of the form $2^p 3^q$, where p,q are nonnegative integers, divides some number of the form $a_{2k}10^{2k} + a_{2k-2}10^{2k-2} + \cdots + a_210^2 + a_0$, where $a_{2i} \in \{1, 2, \dots, 9\}$.

7. Find all positive integers *k* for which there exists a function $f : \mathbb{N} \to \mathbb{Z}$ satisfying f(1997) = 1998 and, for all a, b,

$$f(ab) = f(a) + f(b) + kf(\gcd(a,b)).$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

8. Let *O* be the circumcenter and *R* be the circumradius of an acute triangle *ABC*. Let *AO* meet the circumcircle of *OBC* again at *D*, *BO* meet the circumcircle of *OCA* again at *E*, and *CO* meet the circumcircle of *OAB* again at *F*. Show that

 $OD \cdot OE \cdot OF \ge 8R^3$.

9. For $n \ge k \ge 3$, let $X = \{1, 2, ..., n\}$ and let \mathscr{F}_k a the family of *k*-element subsets of *X*, any two of which have at most k - 2 elements in common. Show that there exists a subset M_k of *X* with at least $[\log_2 n] + 1$ elements containing no subset in \mathscr{F}_k .

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com