Romanian IMO Team Selection Tests 1997

First Test

Time: 4.5 hours

- 1. In the plane are given a line Δ and three circles tangent to Δ and externally tangent to each other. Show that the triangle whose vertices are the centers of the circles has an obtuse angle, and find the maximum value of that angle.
- 2. Find all sets A of 9 positive integers such that for any positive integer $n \le 500$ there is a subset of A whose elements sum up to n.
- 3. Let *M* be a set of *n* points in the plane, $n \ge 4$, no three of which are collinear and not all lying on a circle. Suppose that $f: M \to \mathbb{R}$ is a function such that for any circle *C* passing through at least three points of *M*,

$$\sum_{P \in M \cap C} f(P) = 0$$

Show that $f \equiv 0$.

4. Let *D* be a point on the side *BC* of a triangle *ABC* and let ω be the circumcircle of $\triangle ABC$. Let γ_1 be the circle tangent to *AD*, *BD* and internally to ω , and γ_2 be the circle tangent to *AC*, *CD* and internally to ω . Show that γ_1 and γ_2 are tangent if and only if *AD* bisects the angle *BAC*.

Second Test

Time: 4.5 hours

- 1. Let be given a pyramid $VA_1...A_n$, $n \ge 4$. A plane Π intersects the edges $VA_1,...,VA_n$ at points $B_1,...,B_n$, respectively. Suppose that the polygons $A_1A_2...A_n$ and $B_1B_2...B_n$ are similar. Prove that Π is parallel to the plane $A_1A_2...A_n$.
- 2. Let *A* be the set of integers that can be written as $a^2 + 2b^2$ for some integers *a*, *b*, where $b \neq 0$. Show that if *p* is a prime and $p^2 \in A$ then $p \in A$.
- 3. Let $p \ge 5$ be a prime and k be an integer with $0 \le k < p$. Find the maximum length of an arithmetic progression, none of whose terms contain a digit k in base p.
- 4. Let p,q,r be distinct prime numbers. Consider the set

$$A = \{ p^{a} q^{b} r^{c} \mid 0 \le a, b, c \le 5 \}.$$

Find the smallest $n \in \mathbb{N}$ such that any *n*-element subset of *A* contains two distinct elements *x*, *y* such that *x* divides *y*.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

Third Test

Time: 4.5 hours

- 1. Let *ABCDEF* be a convex hexagon. Let *P*, *Q*, *R* be the intersection points of *AB* and *EF*, *EF* and *CD*, *CD* and *AB*, respectively, and let *S*, *T*, *U* be the intersection points of *BC* and *DE*, *DE* and *FA*, *FA* and *BC*, respectively. Show that if $\frac{AB}{PR} = \frac{CD}{RQ} = \frac{EF}{QP}$, then $\frac{BC}{US} = \frac{DE}{ST} = \frac{FA}{TU}$.
- 2. Let *P* and *D* denote the set of all points and the set of all lines in the plane, respectively. Does there exist a bijective function $f : P \to D$ such that, whenever *A*,*B*,*C* are collinear points, lines f(A), f(B), f(C) are either concurrent or parallel?
- 3. Find all functions $f : \mathbb{R} \to [0, \infty)$ such that

$$f(x^2 + y^2) = f(x^2 - y^2) + f(2xy)$$
 for all $x, y \in \mathbb{R}$.

4. Let $n \ge 2$ be an integer and $P(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + 1$ be a polynomial with integer coefficients. Suppose that $a_k = a_{n-k}$ for $k = 1, \dots, n-1$. Prove that there exist infinitely many pairs of positive numbers (x, y) satisfying x | P(y) and y | P(x).

Fourth Test

Time: 4.5 hours

- 1. Let P(x) and Q(x) be monic irreducible polynomials with rational coefficients. Suppose that there are roots α of P and β of Q such that $\alpha + \beta$ is rational. Prove that $P(x)^2 - Q(x)^2$ has a rational root.
- 2. Let a > 1 be an integer. Prove that the set $\{a^{n+1} + a^n 1 \mid n \in \mathbb{N}\}$ contains an infinite subset of pairwise coprime numbers.
- 3. Determine the number of ways to color the vertices of a regular 12-gon in two colors so that no set of vertices of the same color form a regular polygon.
- 4. Let Γ be a circle and *AB* a line not meeting Γ . For any point *P* on Γ , let the line *AP* meets Γ again at *P'* and let the line *BP'* meet Γ again at f(P). Given a point $P_0 \in \Gamma$, we define the sequence P_i by $P_{n+1} = f(P_n)$ for $n \in \mathbb{N}_0$. Show that if k > 0 is an integer such that $P_k = P_0$ holds for a single choice of P_0 , then $P_k = P_0$ holds for every choice of P_0 .

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com