Romanian Team Selection Tests 2008

First Test

- 1. Given an integer $n \ge 2$, find all sets $A \subseteq \mathbb{Z}$ with *n* elements such that the sum of the elements of any nonemtpy subset of *A* is not divisible by n + 1.
- 2. Let a_i , b_i be positive real numbers, $i \in \{1, 2, ..., n\}$, $n \ge 2$ such that $a_i < b_i$ for all *i*. Assume that for all *i*:

$$b_1+\cdots+b_n<1+a_1+\cdots+a_n.$$

Prove that there exists $c \in \mathbb{R}$ such that for all $i \in \{1, 2, ..., n\}$ and all $k \in \mathbb{Z}$ the following inequality holds:

$$(a_i + c + k)(b_i + c + k) > 0.$$

- 3. Let *ABCDEF* be a convex hexagon with all the sides of length 1. Prove that at least one of the radii of the circumcircles of $\triangle ACE$ and $\triangle BDF$ is greater than or equal to 1.
- 4. Prove that there exists a set S of n 2 points inside a convex *n*-gon P, such that inside any triangle determined by three vertices of P there is exactly one point from S (inside or on the edges).
- 5. Find the greatest common divisor of the numbers:

$$2^{561} - 2, 3^{561} - 3, \cdots, 561^{561} - 561.$$

Second Test

1. Assume that $n \ge 3$ is an odd integer. Determine the maximal value of

$$\sqrt{|x_1-x_2|} + \sqrt{|x_2-x_3|} + \dots + \sqrt{|x_{n-1}-x_n|} + \sqrt{|x_n-x_1|}$$

where x_i are positive real numbers from [0, 1].

- 2. Do there exist a sequence of positive integers $1 \le a_1 < a_2 < a_3 < \cdots$ such that for each $n \in \mathbb{N}$ the set $\{a_k + n : k = 1, 2, \dots\}$ contains finitely many prime numbers?
- 3. Show that each convex pentagon has a vertex V for which the length of the altitude to the opposite edge v is strictly less than the sum of the altitudes to v from the two vertices adjacent to V.
- 4. Let *G* be a connected graph with *n* vertices and *m* edges such that each edge is contained in at least one triangle. Find the minimum value of *m*.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

Third Test

- 1. Let *ABC* be a triangle with $\angle BAC < \angle CAB$. Denote by *D* and *E* points on the sides *AC* and *AB* such that $\angle ACB = \angle BED$. Let *F* be a point in the interior of the quadrilateral *BCDE* such that the circumcircle of $\triangle BCF$ is tangent to the circumcircle of $\triangle DEF$ and the circumcircle of $\triangle BEF$ is tangent to the circumcircle of $\triangle CDF$. Prove that the points *A*, *C*, *E*, *F* lie on a circle.
- 2. Let *ABC* be an acute triangle with orthocenter *H* and let *X* be an arbitrary point in its plane. THe circle with diameter *HX* intersects the lines *AH* and *AX* at A_1 and A_2 respectively. The points B_1 , B_2 , C_1 , C_2 are defined analogously. Prove that the lines A_1A_2 , B_1B_2 , and C_1C_2 are concurrent.
- 3. Given positive integers $m, n \ge 3$, prove that $2^m 1 \nmid 3^n 1$.
- 4. Let $n \in \mathbb{N}$. A set of people is called *n*-balanced if in any subset of 3 persons there exist at least two who know each other, and in any subsets of *n* persons there are two who don't know each other. Prove that *n*-balanced set can have at most (n-1)(n+2)/2 persons.

Fourth Test

- 1. Let *ABCD* be a convex quadrilateral. Let *O* be the intersection of the diagonals *AC* and *BD*, *P* the intersection of the lines *AB* and *CD*, and *Q* the intersection of the lines *BC* and *DA*. Denote by *R* the feet of perpendicular from *O* to the line *PQ*. Prove that the feet of perpendiculars from *O* to the lines determined by the sides of *ABCD* belong to a circle.
- 2. Let $m, n \ge 1$ be two relatively prime integers. For each integer *s* determine the number of *m*-element sets $A \subseteq \{1, 2, ..., m + n 1\}$ such that

$$\sum_{x \in A} x \equiv s \; (\bmod \; n)$$

3. Let $n \ge 3$ be an integer and let $m \ge 2^{n-1} + 1$. Prove that for each family of nonzero distinct subsets $(A_j)_{j=1}^m$ of $\{1, 2, ..., n\}$ there exist indeces *i*, *j*, *k* such that $A_i \cup A_j = A_k$?

Fifth Test

1. Find all $n \in \mathbb{N}$ for which there exists a permutation σ of the set $\{1, 2, ..., n\}$ such that the sets

$$\{|\sigma(k) - k| : k \in \{1, 2, \dots, n\}\}$$

has exactly *n* elements.

2

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- 2. Denote by k_a , k_b , k_c the circles whose diameters are the medians m_a , m_b , m_c of $\triangle ABC$, respectively. If two of these circles are tangent to the incircle of $\triangle ABC$, prove that the third circle is tangent as well.
- 3. Let \mathscr{P} be a square. For each $n \in \mathbb{N}$ denote by f(n) the maximal number of elements of a partition of \mathscr{P} into rectangles such that each line which is parallel to some side of \mathscr{P} intersects at most *n* interiors of rectangles. Prove that

$$3 \cdot 2^{n-1} - 2 \le f(n) \le 3^n - 2.$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com