12-th Nordic Mathematical Contest

April 2, 1998

1. Find all functions $f : \mathbb{Q} \to \mathbb{Q}$ such that

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
 for all $x, y \in \mathbb{Q}$.

- 2. Two circles C_1 and C_2 with centers M_1 and M_2 respectively intersect at A and B. A point P is taken on the segment AB so that $AP \neq BP$. The line through P perpendicular to M_1P intersects C_1 at C and D, and the line through P perpendicular to M_2P intersects C_2 at E and F. Prove that C, D, E, F are the vertices of a rectangle.
- 3. (a) For which positive integers *n* is there a permutation x_1, \ldots, x_n of $1, 2, \ldots, n$ such that *k* divides $x_1 + \cdots + x_k$ for $k = 1, \ldots, n$?
 - (b) Does there exist an infinite sequence $x_1, x_2, ...$ containing every positive integer exactly once such that *k* divides $x_1 + \cdots + x_k$ for every $k \in \mathbb{N}$?

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com