1. Find all natural numbers \(m \) such that
\[
1! \cdot 3! \cdot 5! \cdots (2m - 1)! = \left(\frac{m(m + 1)}{2} \right)!.
\]

2. In a triangle \(ABC \), the altitude from \(A \) meets the circumcircle again at \(T \). Let \(O \) be the circumcenter. The lines \(OA \) and \(OT \) intersect the side \(BC \) at \(Q \) and \(M \), respectively. Prove that
\[
\frac{S_{AQC}}{S_{CMT}} = \left(\frac{\sin B}{\cos C} \right)^2.
\]

3. Prove that if \(a, b, c \) are positive numbers satisfying \(1 = ab + bc + ca + 2abc \), then
\[
2(a + b + c) + 1 \geq 32abc.
\]

4. Let \(z_1, z_2, z_3 \) be pairwise distinct complex numbers satisfying \(|z_1| = |z_2| = |z_3| = 1 \) and
\[
\frac{1}{2 + |z_1 + z_2|} + \frac{1}{2 + |z_2 + z_3|} + \frac{1}{2 + |z_3 + z_1|} = 1.
\]
If the points \(A(z_1), B(z_2), C(z_3) \) are vertices of an acute-angled triangle, prove that this triangle is equilateral.