4-th Mediterranean Mathematical Competition 2001

1. Let \(P \) and \(Q \) be points on a circle \(k \). A chord \(AC \) of \(k \) passes through the midpoint \(M \) of \(PQ \). Consider a trapezoid \(ABCD \) inscribed in \(k \) with \(AB \parallel CD \). Prove that the intersection point \(X \) of \(AD \) and \(BC \) depends only on \(k \) and \(P,Q \).

2. Find all integers \(n \) for which the polynomial \(p(x) = x^5 - nx - n - 2 \) can be represented as a product of two non-constant polynomials with integer coefficients.

3. Show that there exists a positive integer \(N \) such that the decimal representation of \(2000^N \) starts with the digits 200120012001.

4. Let \(\mathcal{S} \) be the set of points inside a given equilateral triangle \(ABC \) with side 1 or on its boundary. For any \(M \in \mathcal{S} \), \(a_M, b_M, c_M \) denote the distances from \(M \) to \(BC, CA, AB \), respectively. Define
 \[
 f(M) = a_M^3(b_M - c_M) + b_M^3(c_M - a_M) + c_M^3(a_M - b_M).
 \]
 (a) Describe the set \(\{ M \in \mathcal{S} \mid f(M) \geq 0 \} \) geometrically.
 (b) Find the minimum and maximum values of \(f(M) \) as well as the points in which these are attained.