19-th Korean Mathematical Olympiad 2006

Final Round

First Day – March 25, 2006

1. In a triangle ABC with $AB \neq AC$, the incircle touches the sides BC, CA, AB at D, E, F, respectively. Line AD meets the incircle again at P. The line EF and the line through P perpendicular to AD meet at Q. Line AQ intersects DE at X and DF at Y. Prove that A is the midpoint of XY.

2. For a positive integer a, let S_a be the set of primes p for which there exists an odd integer b such that p divides $(2^a)^b - 1$. Prove that for every a there exist infinitely many primes that are not contained in S_a.

3. Three schools A, B and C, each with five players denoted a_1, b_1, c_1 respectively, take part in a chess tournament. The tournament is held following the rules:

 (i) Players from each school have matches in order with respect to indices, and defeated players are eliminated; the first match is between a_1 and b_1.

 (ii) If $y_j \in Y$ defeats $x_i \in X$, his next opponent should be from the remaining school if not all of its players are eliminated; otherwise his next opponent is x_{i+1}. The tournament is over when two schools are completely eliminated.

 (iii) When x_i wins a match, its school wins 10^{i-1} points.

At the end of the tournament, schools A, B, C scored P_A, P_B, P_C respectively. Find the remainder of the number of possible triples (P_A, P_B, P_C) upon division by 8.

Second Day – March 26, 2006

4. Given three distinct real numbers a_1, a_2, a_3, define

 \[b_j = \left(1 + \frac{a_j a_i}{a_j - a_i} \right) \frac{1 + a_j a_k}{a_j - a_k}, \text{ where } \{i, j, k\} = \{1, 2, 3\}. \]

Prove that $1 + |a_1 b_1 + a_2 b_2 + a_3 b_3| \leq (1 + |a_1|)(1 + |a_2|)(1 + |a_3|)$ and find the cases of equality.

5. In a convex hexagon $ABCDEF$ triangles ABC, CDE, EFA are similar. Find conditions on these triangles under which triangle ACE is equilateral if and only if so is BDF.

6. A positive integer N is said to be n-good if

 (i) N has at least n distinct prime divisors,

 (ii) there exist distinct positive divisors $1, x_2, \ldots, x_n$ whose sum is N.

Show that there exists an n-good number for each $n \geq 6$.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović
www.imomath.com