1. Consider the polynomial

\[f(x) = (1 + x)^{n_1} + (1 + x)^{n_2} + \cdots + (1 + x)^{n_k}, \]

where \(n_1, n_2, \ldots, n_k \) are positive integers. For each positive integer \(a \), find the minimum of the coefficient at \(x^a \) as the \(k \)-tuple \((n_1, \ldots, n_k) \) varies over all \(k \)-tuples with sum \(n \).

2. For all natural numbers \(m, n \), prove that

\[
\frac{1}{\sqrt{n} + 1} + \frac{1}{\sqrt{m} + 1} \geq 1.
\]

3. Equilateral triangles \(ABM \) and \(CDP \) are drawn outside a convex quadrilateral \(ABCD \), and equilateral triangles \(BCN \) and \(DAQ \) are drawn inside \(ABCD \). Suppose that among the points \(M, N, P, Q \), no three are on a line. Prove that \(MNPQ \) is a parallelogram.

4. On the coordinate plane, a piece can move 1 right or 1 up per move. Find the number of possible ways for the piece to move from point \((0,0)\) to \((n,n)\), not passing through any of the points \((1,1), (2,2), \ldots, (n-1,n-1)\).

5. Consider the matrix \(A = (a_{ij})_{i,j=1}^{1999} \) given by \(a_{ij} = 1 \) if \(i \geq j \) and \(a_{ij} = 0 \) otherwise. Find the number of ways of choosing 1998 ones from the matrix so that no two of them are in the same row or column.

6. Let \(a, b, c \) be positive real numbers with \(abc \geq 1 \). Prove that

\[
\frac{1}{a + b^4 + c^4} + \frac{1}{a^4 + b + c^4} + \frac{1}{a^4 + b^4 + c} \leq 1.
\]

7. If \(I \) is the incenter of a triangle \(ABC \), prove that

\[
IA^2 + IB^2 + IC^2 \geq \frac{AB^2 + BC^2 + CA^2}{3}.
\]

8. Prove that the equation \(x^3 + y^3 = 7z^3 \) has infinitely many solutions in integers \(x, y, z \) with \(\gcd(x,y,z) = 1 \).