Grosman Mathematical Olympiad 1995

- 1. Positive integers $d_1, d_2, ..., d_n$ are divisors of 1995. Prove that there exist d_i and d_i among them, such the denominator of the reduced fraction d_i/d_i is at least *n*.
- 2. Two players play a game on an infinite board that consists of unit squares. Player I chooses a square and marks it with *O*. Then player II chooses another square and marks it with *X*. They play until one of the players marks a whole row or a whole column of five consecutive squares, and this player wins the game. If no player can achieve this, the result of the game is a tie. Show that player II can prevent player I from winning.
- 3. Two thieves stole an open chain with 2k white beads and 2m black beads. They want to share the loot equally, by cutting the chain to pieces in such a way that each one gets k white beads and m black beads. What is the minimal number of cuts that is always sufficient?
- 4. Two given circles α and β intersect each other at two points. Find the locus of the centers of all circles that are orthogonal to both α and β .
- 5. For non-coplanar points are given in space. A plane π is called *equalizing* if all four points have the same distance from π . Find the number of equilizing planes.
- 6. (a) Prove that there is a unique function $f : \mathbb{Q} \to \mathbb{Q}$ satisfying:
 - (i) $f(q) = 1 + f\left(\frac{q}{1-2q}\right)$ for $0 < q < \frac{1}{2}$; (ii) f(q) = 1 + f(q-1) for $1 < q \le 2$; (iii) $f(q)f\left(\frac{1}{q}\right) = 1$ for all $q \in \mathbb{Q}^+$.
 - (b) For this function f, find all $r \in \mathbb{Q}^+$ such that f(r) = r.
- 7. For a given positive integer *n*, let A_n be the set of all points (x, y) in the coordinate plane with $x, y \in \{0, 1, ..., n\}$. A point (i, j) is called *internal* if 0 < i, j < n. A real function *f*, defined on A_n , is called *good* if it has the following property: For every internal point *x*, the value of f(x) is the arithmetic mean of its values on the four neighboring points (i.e. the points at the distance 1 from *x*). Prove that if *f* and *g* are good functions that coincide at the non-internal points of A_n , then $f \equiv g$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com