1. Let \(n \) be a positive integer. Each point \((x, y)\) in the plane, where \(x \) and \(y \) are nonnegative integers with \(x + y = n \), is colored red or blue, subject to the following condition: If a point \((x, y)\) is red, then so are all points \((x', y')\) with \(x' \leq x \) and \(y' \leq y \). Let \(A \) be the number of ways to choose \(n \) blue points with distinct \(x \)-coordinates, and let \(B \) be the number of ways to choose \(n \) blue points with distinct \(y \)-coordinates. Prove that \(A = B \).

(Colombia)

2. The circle \(S \) has center \(O \), and \(BC \) is a diameter of \(S \). Let \(A \) be a point of \(S \) such that \(\angle AOB < 120^\circ \). Let \(D \) be the midpoint of the arc \(AB \) that does not contain \(C \). The line through \(O \) parallel to \(DA \) meets the line \(AC \) at \(I \). The perpendicular bisector of \(OA \) meets \(S \) at \(E \) and at \(F \). Prove that \(I \) is the incenter of the triangle \(CEF \).

(South Korea)

3. Find all pairs of positive integers \(m, n \geq 3 \) for which there exist infinitely many positive integers \(a \) such that
\[
\frac{a^n + a - 1}{a^n + a^2 - 1}
\]
is itself an integer.

(Romania)

Second Day – July 25

4. Let \(n \geq 2 \) be a positive integer, with divisors \(1 = d_1 < d_2 < \cdots < d_k = n \). Prove that \(d_1 d_2 + d_2 d_3 + \cdots + d_{k-1} d_k \) is always less than \(n^2 \), and determine when it is a divisor of \(n^2 \).

(Romania)

5. Find all functions \(f \) from the reals to the reals such that
\[
(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)
\]
for all real \(x, y, z, t \).

(India)

6. Let \(n \geq 3 \) be a positive integer. Let \(C_1, C_2, C_3, \ldots, C_n \) be unit circles in the plane, with centers \(O_1, O_2, O_3, \ldots, O_n \) respectively. If no line meets more than two of the circles, prove that
\[
\sum_{1 \leq i < j \leq n} \frac{1}{O_i O_j} \leq \frac{(n - 1) \pi}{4}.
\]

(Ukraine)