Greek Team Selection Test 2005

Athens, April 2, 2005

Juniors

- 1. Is it possible to cut a convex 39-gon into nine convex hexagons?
- 2. Prove that if x, y, z are real numbers, then

$$\frac{x^2 - y^2}{2x^2 + 1} + \frac{y^2 - z^2}{2y^2 + 1} + \frac{z^2 - x^2}{2z^2 + 1} \le 0.$$

- 3. In a cyclic quadrilateral *ABCD*, *M* is the midpoint of side *AB* and *R* is the intersection point of *MC* and *BD*. A line through *C* is parallel to *AR* and meets *BD* at point *S*. Prove that if $\angle CAD = \angle RAB = \frac{1}{2} \angle BMC$, then BR = SD.
- 4. Find all positive integers n > 3 for which *n* divides (n 2)!.

Seniors

- 1. The sides of a triangle are the roots of a cubic equation with rational coefficients. Prove that the altitudes of this triangle are roots of a 6-th degree equation with rational coefficients.
- 2. The circle Γ and the line *e* have no common points. Let *AB* be the diameter of Γ perpendicular to *e*, with *B* closer to *e* than *A*. An arbitrary point $C \neq A, B$ is chosen on Γ . The line *AC* intersects *e* at *D*. The line *DE* is tangent to Γ at *E*, with *B* and *E* on the same side of *AC*. Let *BE* intersect *e* at *F*, and let *AF* intersect Γ again at $G \neq A$. Prove that the reflection of *G* in *AB* lies on the line *CF*.
- 3. Consider the polynomial $P(x) = x^3 + 19x^2 + 94x + a$, where *a* is a positive integer. If *p* is a prime number, prove that among the numbers $P(0), P(1), \dots, P(p-1)$ at most three are divisible by *p*.
- 4. There are 10001 students at a university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of *k* societies. Suppose that the following conditions hold:
 - (i) Each pair of students are in exactly one club.
 - (ii) For each student and each society, the student is in exactly one club of the society.
 - (iii) Each club has an odd number of students. In addition, a club with 2m + 1 students (*m* is a positive integer) is in exactly *m* societies.

Find all possible values of *k*.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com