## 18-th Hellenic Mathematical Olympiad 2001

Athens, February 10, 2001

## Juniors

1. Let  $\alpha, \beta, x, y$  be real numbers such that  $\alpha + \beta = 1$ . Prove that

$$\frac{1}{\alpha/x + \beta/y} \le \alpha x + \beta y$$

and find when equality holds.

- 2. (a) Find all pairs (m, n) of integers satisfying  $m^3 4mn^2 = 8n^3 2m^2n$ .
  - (b) Among such pairs find those for which  $m + n^2 = 3$ .
- 3. We are given 8 different weights and a balance without a scale.
  - (a) Find the smallest number of weighings necessary to find the heaviest weight.
  - (b) How many weighting is further necessary to find the second heaviest weight?
- 4. Let  $A\Delta$  be an altitude of a triangle  $AB\Gamma$ . The bisectors AE, BZ of angles at A and B ( $E \in B\Gamma$ ,  $Z \in A\Gamma$ ) meet at I. Let  $\Theta$  be the foot of perpendicular from I to  $A\Gamma$ . Also, let  $\xi$  be the line through A perpendicular to  $A\Gamma$ . If the line  $E\Theta$  intersects  $\xi$  at K, prove that  $A\Delta = AK$ .

## Seniors

- 1. A triangle  $AB\Gamma$  is inscribed in a circle of radius R. Let  $B\Delta$  and  $\Gamma E$  be the bisectors of the angles B at  $\Gamma$  respectively and let the line  $\Delta E$  meet the arc AB not containing  $\Gamma$  at point K. Let  $A_1, B_1, \Gamma_1$  be the feet of perpendiculars from K to  $B\Gamma$ ,  $A\Gamma$ , AB, and x, y are the distances from  $\Delta$  and E to AB, respectively, then:
  - (a) Express the lengths of  $KA_1, KB_1, K\Gamma_1$  in terms of x, y and the ratio  $\lambda = K\Delta/E\Delta$ .
  - (b) Prove that  $\frac{1}{KB} = \frac{1}{KA} + \frac{1}{K\Gamma}$ .
- 2. Prove that there are no positive integers  $\alpha, \beta$  such that  $(15\alpha + \beta)(\alpha + 15\beta)$  is a power of 3.
- 3. A function  $f: \mathbb{N}_0 \to \mathbb{R}$  satisfies f(1) = 3 and

$$f(m+n) + f(m-n) - m + n - 1 = \frac{f(2m) + f(2n)}{2}$$

for any nonnegative integers m, n with  $m \ge n$ . Find all such functions f.



4. The numbers 1 to 500 are written on a board. Two pupils A and B play the following game. A player in turn deletes one of the numbers from the board. The game is over when only two numbers remain. Player B wins if the sum of the two remaining numbers is divisible by 3, otherwise A wins. If A plays first, show that B has a winning strategy.

