French Mathematical Olympiad 1988

Time: 5 hours.

- 1. Let us consider a matrix *T* with *n* rows denoted 1, ..., n and *p* columns 1, ..., p. Its entries a_{ik} $(1 \le i \le n, 1 \le k \le p)$ are integers such that $1 \le a_{ik} \le N$, where *N* is a given natural number. Let E_i be the set of numbers that appear on the *i*-th row. Answer question (a) or (b).
 - (a) Assume *T* satisfies the following conditions: (1) E_i has exactly *p* elements for each *i*, and (2) all E_i 's are mutually distinct. Let *m* be the smallest value of *N* that permits a construction of such an $n \times p$ table *T*.
 - i. Compute *m* if n = p + 1.
 - ii. Compute *m* if $n = 10^{30}$ and p = 1988.
 - iii. Determine $\lim_{n\to\infty} \frac{m^p}{n}$, where *p* is fixed.
 - (b) Assume *T* satisfies the following conditions instead: (1) p = n, (2) whenever *i*, *k* are integers with $i + k \le n$, the number a_{ik} is not in the set E_{i+k} .
 - i. Prove that all E_i 's are mutually different.
 - ii. Prove that if $n \ge 2^q$ for some integer q > 0, then $N \ge q + 1$.
 - iii. Let $n = 2^r 1$ for some integer r > 0. Prove that $N \ge r$ and show that there is such a table wih N = r.
- 2. For each $n \in \mathbb{N}$, determine the sign of $n^6 + 5n^5 \sin n + 1$.

For which $n \in \mathbb{N}$ does it hold that $\frac{x^2 + 5n\cos n + 1}{n^6 + 5n^5\sin n + 1} \ge 10^{-4}$.

- 3. Consider two spheres Σ_1 and Σ_2 and a line Δ not meeting them. Let C_i and r_i be the center and radius of Σ_i , and let H_i and d_i be the orthogonal projection of C_i onto Δ and the distance of C_i from Δ (i = 1, 2). For a point M on Δ , let $\delta_i(M)$ be the length of a tangent MT_i to Σ_i , where $T_i \in \Sigma_i$ (i = 1, 2). Find M on Δ for which $\delta_1(M) + \delta_2(M)$ is minimal.
- 4. A circle \mathscr{C} and five distinct points M_1, M_2, M_3, M_4 and M on \mathscr{C} are given in the plane. Prove that the product of the distances from M to lines M_1M_2 and M_3M_4 is equal to the product of the distances from M to the lines M_1M_3 and M_2M_4 .

What can one deduce for 2n + 1 distinct points M_1, \ldots, M_{2n}, M on C?

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com