Chinese IMO Team Selection Tests 1987

First Test

1. For all positive integers k find the smallest positive integer $f(k)$ for which there exist 5 sets S_1, S_2, \ldots, S_5 satisfying:

 (i) $|S_i| = k$ for $i = 1, \ldots, 5$;
 (ii) $S_i \cap S_{i+1} = \emptyset$ for $i = 1, \ldots, 5$ (where $S_6 = S_1$);
 (iii) $|\bigcup_{i=1}^5 S_i| = f(k)$.

 Generalize to $n \geq 3$ sets instead of 5.

2. A rectangular polygon \mathcal{P} with 100 sides has the following properties: (i) all its sides are parallel to the coordinate axes, and (ii) all its sides have odd integral lengths. Prove that the area of \mathcal{P} is odd.

3. Define the sequence (r_n) by $r_1 = 1$ and $r_n = r_1r_2 \cdots r_{n-1}$ for $n \geq 2$. Prove that if

 \[\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < 1, \]

 then

 \[\frac{1}{r_1} + \frac{1}{r_2} + \cdots + \frac{1}{r_n} < 1. \]

Second Test

1. Given a convex figure \mathcal{S} in the Cartesian plane that is symmetric with respect to both axis, let \mathcal{A} be a rectangle of the maximum possible area lying entirely within \mathcal{S}. Let λ be the smallest ratio of the similitude with respect to the center of \mathcal{A} such that the image of \mathcal{A} under this similitude covers \mathcal{S}. Find the largest value of λ over all figures \mathcal{S}.

2. Find the positive integers n for which the equation $x^3 + y^3 + z^3 = nx^2y^2z^2$ has positive integer solutions.

3. Prove that in every simple graph with $2n$ vertices and $n^2 + 1$ edges $(n \geq 3)$ there exist four vertices which are connected with each other by at least five edges.