15-th Canadian Mathematical Olympiad 1983

May 4, 1983

1. Find all posiitive integers x, y, z, w such that $w!=x!+y!+z!$.
2. For each real number r let T_{r} be the transformation of the plane that takes the point (x, y) into the point $\left(2^{r} x, r 2^{r} x+2^{r} y\right)$. Let $\mathscr{F}=\left\{T_{r} \mid r \in \mathbb{R}\right\}$. Find all curves $y=f(x)$ whose graphs remain unchanged by every transformation in \mathscr{F}.
3. The area of a triangle is determined by the lengths of its sides. Is the volume of a tetrahedron determined by the areas of its faces?
4. Prove that for every prime number p, there are infinitely many positive integers n such that p divides $2^{n}-n$.
5. Show that the gepmetric mean of a set S of n positive numbers is equal to the geomteric mean of the geometric means of all nonempty subsets of S.
