40-th Bulgarian Mathematical Olympiad 1991

Fourth Round

First Day - Sofia

- 1. Let *M* be a point on the altitude *CD* of an acute-angled triangle *ABC*, and *K* and *L* the orthogonal projections of *M* on *AC* and *BC*. Suppose that the incenter and circumcenter of the triangle lie on the segment *KL*.
 - (a) Prove that CD = R + r, where R and r are the circumradius and inradius.
 - (b) Find the minimum value of the ratio *CM* : *CD*.
- 2. Let *K* be a cube with edge *n*, where n > 2 is an even integer. Cube *K* is divided into n^3 unit cubes. We call any set of n^2 unit cubes lying on the same horizontal or vertical level a *layer*. We dispose of $n^3/4$ colors, in each of which we paint exactly 4 unit cubes. Prove that we can always select *n* unit cubes of distinct colors, no two of which lie on the same layer.
- 3. Prove that for every prime number $p \ge 5$,
 - (a) p^3 divides $\binom{2p}{p} 2;$
 - (b) p^3 divides $\binom{kp}{p} k$ for every natural number *k*.

Second Day – Sofia

4. Let f(x) be a polynomial of degree *n* with real coefficients, having *n* (not necessarily distinct) real roots. Prove that for all real *x*,

$$f(x)f''(x) \le f'(x)^2.$$

- 5. On a unit circle with center *O*, *AB* is an arc with the central angle $\alpha < 90^{\circ}$. Point *H* is the foot of the perpendicular from *A* to *OB*, *T* is a point on arc *AB*, and *l* is the tangent to the circle at *T*. The line *l* and the angle *AHB* form a triangle Δ .
 - (a) Prove that the area of Δ is minimal when *T* is the midpoint of arc *AB*.
 - (b) Prove that if S_{α} is the minimal area of Δ then the function S_{α}/α has a limit when $\alpha \to 0$ and find this limit.
- 6. White and black checkers are put on the squares of an $n \times n$ chessboard $(n \ge 2)$ according to the following rule. Initially, a black checker is put on an arbitrary square. In every consequent step, a white checker is put on a free square, whereby all checkers on the squares neighboring by side are replaced by checkers of the opposite colors. This process is continued until there is a checker on every square. Prove that in the final configuration there is at least one black checker.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com