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???, ??

Individual Competition – June ??

First Day

1. On sidesAB andBC of a squareABCD the respective pointsE andF have been
chosen so thatBE = BF. Let BN be the altitude in triangleBCE. Prove that
∠DNF = 90◦.

2. Find all polynomials of the form

Pn(x) = n!xn + an−1xn−1 + · · ·+ a1x +(−1)nn(n +1)

with integer coefficients, havingn real rootsx1, . . . ,xn satisfyingk ≤ xk ≤ k +1
for k = 1, . . . ,n.

3. Find all positive integersn such that the inequality
(

n

∑
i=1

a2
i

)(

n

∑
i=1

ai

)

−
n

∑
i=1

a3
i ≥ 6

n

∏
i=1

ai

holds for anyn positive numbersa1, . . . ,an.

Second Day

4. Determine all functionsf : N0 → R satisfying

f (x + y)+ f (x− y) = f (3x) for all x,y.

5. The circumcenter and incenter of a given tetrahedron coincide. Prove that all its
faces are congruent.

6. A positive integern and a real numbera are given. Find alln-tuples(x1, . . . ,xn)
of real numbers that satisfy the system of equations

n

∑
i=1

xk
i = ak for k = 1,2, . . . ,n.

Team competition– June ??

7. Let n and m be fixed positive integers. The hexagonABCDEF with vertices
A = (0,0), B = (n,0), C = (n,m), D = (n−1,m), E = (n−1,1), F = (0,1) has
been partitioned inton+m−1 unit squares. Find the number of paths fromA to
C along grid lines, passing through every grid node at most once.
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8. Let A,B,C,D be four points in space, andM andN be the midpoints ofAC and
BD, respectively. Show that

AB2 + BC2+CD2 + DA2 = AC2 + BD2+4MN2
.

9. Find the greatest power of 2 that dividesan =
[

(3+
√

11)2n+1
]

, wheren is a

given positive integer.
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