15-th Asian–Pacific Mathematical Olympiad 2003

1. Let a, b, c, d, e, f be real numbers such that the polynomial

$$p(x) = x^{8} - 4x^{7} + 7x^{6} + ax^{5} + bx^{4} + cx^{3} + dx^{2} + ex + f$$

factorises into eight linear factors $x - x_i$, with $x_i > 0$ for i = 1, 2, ..., 8. Determine all possible values of f.

- 2. Suppose *ABCD* is a square piece of cardboard with side length *a*. On a plane are two parallel lines ℓ_1 and ℓ_2 , which are also *a* units apart. The square *ABCD* is placed on the plane so that sides *AB* and *AD* intersect ℓ_1 at *E* and *F* respectively. Also, sides *CB* and *CD* intersect ℓ_2 at *G* and *H* respectively. Let the perimeters of $\triangle AEF$ and $\triangle CGH$ be m_1 and m_2 respectively. Prove that no matter how the square was placed, $m_1 + m_2$ remains constant.
- 3. Let $k \ge 14$ be an integer, and let p_k be the largest prime number which is strictly less than k. You may assume that $p_k \ge 3k/4$. Let n be a composite integer. Prove:
 - (a) if $n = 2p_k$, then *n* does not divide (n k)!;
 - (b) if $n > 2p_k$, then *n* divides (n-k)!.
- 4. Let a, b, c be the sides of a triangle, with a+b+c = 1, and let $n \ge 2$ be an integer. Show that $\sqrt[n]{a^n+b^n} + \sqrt[n]{b^n+c^n} + \sqrt[n]{c^n+a^n} < 1 + \frac{\sqrt[n]{2}}{2}$.
- 5. Given two positive integers m and n, find the smallest positive integer k such that among any k people, either there are 2m of them who form m pairs of mutually acquainted people or there are 2n of them forming n pairs of mutually unacquainted people.

