IMOmath

Number Theory

1. (32 p.)
Suppose \( m \) and \( n \) are positive integers with \( m> 1 \) such that the domain of the function \( f(x) = \text{arcsin}(\log_{m}(nx)) \) is a closed interval of length \( \frac{1}{2013} \). Let \( S \) be the smallest possible value of \( m+n \). Find the remainder when \( S \) is divided by \( 1000 \).

2. (10 p.)
If the corresponding terms of two arithmetic progressions are multiplied we get the sequence 1440, 1716, 1848, ... . Find the eighth term of this sequence.

3. (32 p.)
Let \( f \) be a function defined along the rational numbers such that \( f(\tfrac mn)=\tfrac1n \) for all relatively prime positive integers \( m \) and \( n \). The product of all rational numbers \( 0< x< 1 \) such that \[ f\left(\dfrac{x-f(x)}{1-f(x)}\right)=f(x)+\dfrac9{52}\] can be written in the form \( \tfrac pq \) for positive relatively prime integers \( p \) and \( q \). Find \( p+q \).

4. (19 p.)
Let \( a,b,c \) and \( d \) be positive real numbers such that \( a^2+b^2-c^2-d^2=0 \) and \( a^2-b^2-c^2+d^2=\frac {56}{53}(bc+ad) \), Let \( M \) be the maximum possible value of \( \frac {ab+cd}{bc+ad} \) ,If \( M \) can be expressed as \( \frac {m}{n} \),\( (m,n)=1 \) then find \( 100m+n \)

5. (6 p.)
Find the least positive integer \( n \) such that when its leftmost digit is deleted, the resulting integer is equal to \( n/29 \).





2005-2019 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax
Home | Olympiads | Book | Training | IMO Results | Forum | Links | About | Contact us