# Number Theory

 1. (10 p.) Find the least positive integer $$n$$ such that when its leftmost digit is deleted, the resulting integer is equal to $$n/29$$.

 2. (2 p.) $$n$$ is an integer between 100 and 999 inclusive, and $$n^{\prime}$$ is the integer formed by reversing the digits of $$n$$. How many possible values are for $$|n-n^{\prime}|$$?

 3. (31 p.) Let $$a,b,c$$ and $$d$$ be positive real numbers such that $$a^2+b^2-c^2-d^2=0$$ and $$a^2-b^2-c^2+d^2=\frac {56}{53}(bc+ad)$$, Let $$M$$ be the maximum possible value of $$\frac {ab+cd}{bc+ad}$$ ,If $$M$$ can be expressed as $$\frac {m}{n}$$,$$(m,n)=1$$ then find $$100m+n$$

 4. (53 p.) Let $$f$$ be a function defined along the rational numbers such that $$f(\tfrac mn)=\tfrac1n$$ for all relatively prime positive integers $$m$$ and $$n$$. The product of all rational numbers $$0< x< 1$$ such that $f\left(\dfrac{x-f(x)}{1-f(x)}\right)=f(x)+\dfrac9{52}$ can be written in the form $$\tfrac pq$$ for positive relatively prime integers $$p$$ and $$q$$. Find $$p+q$$.

 5. (2 p.) The square $$\begin{array}{|c|c|c|} \hline x&20&151 \\\hline 38 & & \\ \hline & & \\ \hline\end{array}$$ is magic, i.e. in each cell there is a number so that the sums of each row and column and of the two main diagonals are all equal. Find $$x$$.

2005-2020 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax