Log In
Register
IMOmath
Olympiads
Book
Training
Forum
IMOmath
Number Theory
1.
(10 p.)
Find the sum of all positive integers of the form \( n = 2^a3^b \) \( (a, b \geq 0) \) such that \( n^6 \) does not divide \( 6^n \).
2.
(53 p.)
Let \( f \) be a function defined along the rational numbers such that \( f(\tfrac mn)=\tfrac1n \) for all relatively prime positive integers \( m \) and \( n \). The product of all rational numbers \( 0< x< 1 \) such that \[ f\left(\dfrac{xf(x)}{1f(x)}\right)=f(x)+\dfrac9{52}\] can be written in the form \( \tfrac pq \) for positive relatively prime integers \( p \) and \( q \). Find \( p+q \).
3.
(21 p.)
Find the largest possible integer \( n \) such that \( \sqrt n + \sqrt{n+60} = \sqrt m \) for some nonsquare integer \( m \).
4.
(12 p.)
Determine the number of positive integers with exactly three proper divisors each of which is less than 50. (1 is a proper divisor of every integer greater than 1)
5.
(2 p.)
The square \( \begin{array}{ccc} \hline x&20&151 \\\hline 38 & & \\ \hline & & \\ \hline\end{array} \) is magic, i.e. in each cell there is a number so that the sums of each row and column and of the two main diagonals are all equal. Find \( x \).
20052021
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us