IMOmath

Number Theory

1. (10 p.)
Find the least positive integer \( n \) such that when its leftmost digit is deleted, the resulting integer is equal to \( n/29 \).

2. (2 p.)
\( n \) is an integer between 100 and 999 inclusive, and \( n^{\prime} \) is the integer formed by reversing the digits of \( n \). How many possible values are for \( |n-n^{\prime}| \)?

3. (31 p.)
Let \( a,b,c \) and \( d \) be positive real numbers such that \( a^2+b^2-c^2-d^2=0 \) and \( a^2-b^2-c^2+d^2=\frac {56}{53}(bc+ad) \), Let \( M \) be the maximum possible value of \( \frac {ab+cd}{bc+ad} \) ,If \( M \) can be expressed as \( \frac {m}{n} \),\( (m,n)=1 \) then find \( 100m+n \)

4. (53 p.)
Let \( f \) be a function defined along the rational numbers such that \( f(\tfrac mn)=\tfrac1n \) for all relatively prime positive integers \( m \) and \( n \). The product of all rational numbers \( 0< x< 1 \) such that \[ f\left(\dfrac{x-f(x)}{1-f(x)}\right)=f(x)+\dfrac9{52}\] can be written in the form \( \tfrac pq \) for positive relatively prime integers \( p \) and \( q \). Find \( p+q \).

5. (2 p.)
The square \( \begin{array}{|c|c|c|} \hline x&20&151 \\\hline 38 & & \\ \hline & & \\ \hline\end{array} \) is magic, i.e. in each cell there is a number so that the sums of each row and column and of the two main diagonals are all equal. Find \( x \).





2005-2020 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax
Home | Olympiads | Book | Training | IMO Results | Forum | Links | About | Contact us