Log In
Register
IMOmath
Olympiads
Book
Training
Forum
IMOmath
Number Theory
1.
(32 p.)
Suppose \( m \) and \( n \) are positive integers with \( m> 1 \) such that the domain of the function \( f(x) = \text{arcsin}(\log_{m}(nx)) \) is a closed interval of length \( \frac{1}{2013} \). Let \( S \) be the smallest possible value of \( m+n \). Find the remainder when \( S \) is divided by \( 1000 \).
2.
(10 p.)
If the corresponding terms of two arithmetic progressions are multiplied we get the sequence 1440, 1716, 1848, ... . Find the eighth term of this sequence.
3.
(32 p.)
Let \( f \) be a function defined along the rational numbers such that \( f(\tfrac mn)=\tfrac1n \) for all relatively prime positive integers \( m \) and \( n \). The product of all rational numbers \( 0< x< 1 \) such that \[ f\left(\dfrac{xf(x)}{1f(x)}\right)=f(x)+\dfrac9{52}\] can be written in the form \( \tfrac pq \) for positive relatively prime integers \( p \) and \( q \). Find \( p+q \).
4.
(19 p.)
Let \( a,b,c \) and \( d \) be positive real numbers such that \( a^2+b^2c^2d^2=0 \) and \( a^2b^2c^2+d^2=\frac {56}{53}(bc+ad) \), Let \( M \) be the maximum possible value of \( \frac {ab+cd}{bc+ad} \) ,If \( M \) can be expressed as \( \frac {m}{n} \),\( (m,n)=1 \) then find \( 100m+n \)
5.
(6 p.)
Find the least positive integer \( n \) such that when its leftmost digit is deleted, the resulting integer is equal to \( n/29 \).
20052019
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us