IMOmath

Geometry

1. (14 p.)
The angle \( \angle C \) of the isosceles triangle \( ABC \) (\( AC = BC \)) has measure of \( 106^o \). M is a point inside the triangle such that \( \angle MAC = 7^o \) and \( \angle MCA = 23^o \). The measure of the \( \angle CMB \) in degrees can be written as a fraction \( p/q \) for relatively prime integers \( p \) and \( q \). Calculate \( p+q \).

2. (46 p.)
Let \( \triangle ABC \) have \( AB=6 \), \( BC=7 \), and \( CA=8 \), and denote by \( \omega \) its circumcircle. Let \( N \) be a point on \( \omega \) such that \( AN \) is a diameter of \( \omega \). Furthermore, let the tangent to \( \omega \) at \( A \) intersect \( BC \) at \( T \), and let the second intersection point of \( NT \) with \( \omega \) be \( X \). The length of \( \overline{AX} \) can be written in the form \( \tfrac m{\sqrt n} \) for positive integers \( m \) and \( n \), where \( n \) is not divisible by the square of any prime. Find \( m+n \).

3. (19 p.)
If \( ABCD \) is a convex quadrilateral with \( AB=200 \), \( BC=153 \), \( BD=300 \), \( \angle BAC=\angle BDC<90^{\circ} \) and \( \angle ABD=\angle BCD \), determine \( CD. \)

4. (4 p.)
Let \( \alpha \) be the angle between vectors \( \vec a \) and \( \vec b \) with \( |\vec a|=2 \) and \( |\vec b|=3 \), given that the vectors \( \vec m=2\vec a-\vec b \) and \( \vec n=\vec a+5\vec b \) are orthogonal. If \( \cos\alpha=\frac pq \) with \( q>0 \) and \( \gcd(p,q)=1 \), compute \( p+q \).

5. (14 p.)
The area of the triangle \( ABC \) is 70. The coordinates of \( B \) and \( C \) are \( (12,19) \) and \( (23,20) \), respectively, and the coordinates of \( A \) are \( (p,q) \). The line containing the median to side BC has slope -5. Find the largest possible value of p+q.





2005-2020 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax
Home | Olympiads | Book | Training | IMO Results | Forum | Links | About | Contact us