Log In
Register
IMOmath
Olympiads
Book
Training
Forum
IMOmath
Geometry
1.
(29 p.)
Assume that all sides of the convex hexagon \( ABCDEF \) are equal and the opposite sides are parallel. Assume further that \( \angle FAB = 120^o \). The \( y \)coordinates of \( A \) and \( B \) are 0 and 2 respectively, and the \( y \)coordinates of the other vertices are 4, 6, 8, 10 in some order. The area of \( ABCDEF \) can be written as \( a\sqrt b \) for some integers \( a \) and \( b \) such that \( b \) is not divisible by a perfect square other than 1. Find \( a+b \).
2.
(31 p.)
Let \( BC \) be a chord of length 6 of a circle with center \( O \) and radius 5. Point \( A \) is on the circle, closer to \( B \) that to \( C \), such that there is a unique chord \( AD \) which is bisected by \( BC \). If \( \sin\angle AOB=\frac pq \) with \( q>0 \) and \( \gcd(p,q)=1 \), find \( p+q \).
3.
(8 p.)
A right circular cylinder has a diameter 12. Two plane cut the cylinder, the first perpendicular to the axis and the second at a \( 45^o \) angle to the first, so that the line of intersection of the two planes touches the cylinder at a single point. The two cuts remove a wedge from the cylinder. If \( V \) is the volume of the wedge calculate \( V/\pi \).
4.
(10 p.)
Let \( K \) and \( M \) be the points on the sides \( AB \) and \( AC \), respectively, of an equilateral triangle \( ABC \) such that \( BK=10 \), \( MK=12 \), and \( MC=8 \). Then the side of the triangle \( ABC \) is equal to \( p+\sqrt q \) for some integers \( p \) and \( q \). Evaluate \( p+q \).
5.
(20 p.)
The area of the triangle \( ABC \) is 70. The coordinates of \( B \) and \( C \) are \( (12,19) \) and \( (23,20) \), respectively, and the coordinates of \( A \) are \( (p,q) \). The line containing the median to side BC has slope 5. Find the largest possible value of p+q.
20052019
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us