# Combinatorics

 1. (22 p.) In a tournament club $$C$$ plays 6 matches, and for each match the probabilities of a win, draw and loss are equal. If the probability that $$C$$ finishes with more wins than losses is $$\frac pq$$ with $$p$$ and $$q$$ coprime $$(q>0)$$, find $$p+q$$.

 2. (6 p.) Let $$S = \{1, 2, 3, 5, 8, 13, 21, 34\}$$. Find the sum $$\sum \max(A)$$ where the sum is taken over all 28 two-element subsets $$A$$ of $$S$$.

 3. (14 p.) Given a convex polyhedron with 26 vertices, 60 edges and 36 faces, 24 of the faces are triangular and 12 are quadrilaterals. A space diagonal is a line segment connecting two vertices which do not belong to the same face. How many space diagonals does the polyhedron have?

 4. (25 p.) There are 27 candidates in elections and $$n$$ citizens that vote for them. If a candidate gets $$m$$ votes, then $$100m/n \leq m-1$$. What is the smallest possible value of $$n$$?

 5. (31 p.) At the basement of a building with 5 floors, Adam, Bob, Cindy, Diana and Ernest entered the elevator. The elevator goes only up and doesn’t come back, and each person gets out of the elevator at one of the five floors. In how many ways can the five people leave the elevator in such a way that at no time are there a male and a female alone in the elevator?

2005-2021 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax