IMOmath

Algebra

1. (5 p.)
Let \( P \) be the product of the non-real roots of the polynomial \( x^4-4x^3+6x^2-4x=2008 \). Evaluate \( [ P] \).

2. (34 p.)
Define a function \(f:\mathbb{Z}\to\mathbb{Z}\) such that \(f(k)=k^2+k+1\) for every integer \(k\). Find the largest positive integer \(n\) such that \[2015f(1^2)f(2^2)\cdots f(n^2)\geq \Big(f(1)f(2)\cdots f(n)\Big)^2.\]

3. (25 p.)
A sequence \( x_n \) of real numbers satisfies \( x_0=0 \) and \( |x_{n}|=|x_{n-1}+1| \) for \( n\geq 1 \). Find the minimal value of \( |x_1+x_2+\dots+ x_{2008}| \).

4. (25 p.)
Let \( f:\mathbb N\rightarrow\mathbb R \) be the function defined by \( f(1) = 1 \), \( f(n) = n/10 \) if \( n \) is a multiple of 10 and \( f(n) = n+1 \) otherwise. For each positive integer \( m \) define the sequence \( x_1 \), \( x_2 \), \( x_3 \), ... by \( x_1 = m \), \( x_{n+1} = f(x_n) \). Let \( g(m) \) be the smallest \( n \) such that \( x_n = 1 \). (Examples: \( g(100) = 3 \), \( g(87) = 7 \).) Denote by \( N \) be the number of positive integers \( m \) such that \( g(m) = 20 \). The number of distinct prime factors of \( N \) is equal to \( 2^u\cdot v \) for two non-negative integers \( u \) and \( v \) such that \( v \) is odd. Determine \( u+v \).

5. (8 p.)
Real numbers \( x,y,z \) are real numbers greater than 1 and \( w \) is a positive real number. If \( \log_xw=24 \), \( \log_yw=40 \) and \( \log_{xyz}w=12 \), find \( \log_zw \).





2005-2021 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax
Home | Olympiads | Book | Training | IMO Results | Forum | Links | About | Contact us