# Algebra

 1. (11 p.) Let $$a$$ be the coefficient of $$x^2$$ in the polynomial $(1-x)(1+2x)(1-3x)\dots (1+14x)(1-15x).$ Determine $$|a|$$

 2. (19 p.) Consider the set $$S\subseteq(0,1]^2$$ in the coordinate plane that consists of all points $$(x,y)$$ such that both $$[\log_2(1/x)]$$ and $$[\log_5(1/y)]$$ are even. The area of $$S$$ can be written in the form $$p/q$$ for two relatively prime integers $$p$$ and $$q$$. Evaluate $$p+q$$.

 3. (31 p.) Let $$a_1,a_2,...$$ be a sequence defined by $$a_1=1$$ and $a_{n+1}=\sqrt {a_n^2-2a_n+3}+1$ for $$n \ge 1$$. Find $$a_{513}$$.

 4. (23 p.) Let $$f:\mathbb N\rightarrow\mathbb R$$ be the function defined by $$f(1) = 1$$, $$f(n) = n/10$$ if $$n$$ is a multiple of 10 and $$f(n) = n+1$$ otherwise. For each positive integer $$m$$ define the sequence $$x_1$$, $$x_2$$, $$x_3$$, ... by $$x_1 = m$$, $$x_{n+1} = f(x_n)$$. Let $$g(m)$$ be the smallest $$n$$ such that $$x_n = 1$$. (Examples: $$g(100) = 3$$, $$g(87) = 7$$.) Denote by $$N$$ be the number of positive integers $$m$$ such that $$g(m) = 20$$. The number of distinct prime factors of $$N$$ is equal to $$2^u\cdot v$$ for two non-negative integers $$u$$ and $$v$$ such that $$v$$ is odd. Determine $$u+v$$.

 5. (14 p.) Let $$a$$, $$b$$, $$c$$, $$d$$ be the roots of $$x^4 - x^3 - x^2 - 1 = 0$$. Find $$p(a) + p(b) + p(c) + p(d)$$, where $$p(x) = x^6 - x^5 - x^3 - x^2 - x$$.

2005-2021 IMOmath.com | imomath"at"gmail.com | Math rendered by MathJax