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1

Problems

1.1 The Fiftieth IMO
Bremen, Germany, July 10–22, 2009

1.1.1 Contest Problems

First Day (July 15)

1. Letn be a positive integer and leta1, . . . , ak (k ≥ 2) be distinct integers in the set
{1, . . . ,n} such thatn dividesai(ai+1−1) for i = 1, . . . ,k−1. Prove thatn does
not divideak(a1−1).

2. Let ABC be a triangle with circumcenterO. The pointsP and Q are interior
points of the sidesCA andAB, respectively. LetK, L andM be the midpoints
of the segmentsBP, CQ, andPQ, respectively, and letΓ be the circle passing
throughK, L, andM. Suppose that the linePQ is tangent to the circleΓ . Prove
thatOP = OQ.

3. Suppose thats1,s2,s3, . . . is a strictly increasing sequence of positive integers
such that the subsequences

ss1,ss2,ss3, . . . and ss1+1,ss2+1,ss3+1, . . .

are both arithmetic progressions. Prove that the sequences1,s2,s3, . . . is itself an
arithmetic progression.

Second Day (July 16)

4. Let ABC be a triangle withAB = AC. The angle bisectors of∠CAB and∠ABC
meet the sidesBC andCA at D andE, respectively. LetK be the incenter of
triangleADC . Suppose that∠BEK = 45◦. Find all possible values of∠CAB.

5. Determine all functionsf from the set of positive integers to the set of positive
integers such that, for all positive integersa andb, there exists a non-degenerate
triangle with sides of lengths
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a, f (b) and f (b + f (a)−1).

(A triangle isnon-degenerate if its vertices are not collinear.)

6. Leta1,a2, ...,an be distinct positive integers and letM be a set ofn−1 positive
integers not containings = a1 + a2 + · · ·+ an. A grasshopper is to jump along
the real axis, starting at the point 0 and makingn jumps to the right with lengths
a1,a2, . . . ,an in some order. Prove that the order can be chosen in such a way
that the grasshopper never lands on any point inM.

1.1.2 Shortlisted Problems

1. A1 (CZE) Find the largest possible integerk such that the following statement
is true:
Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three
sides are colored, such that one is blue, one is red, and one iswhite. Now, for
every color separately, let us sort the lengths of the sides.We obtain

b1 ≤ b2 ≤ ·· · ≤ b2009 the lengths of the blue sides,
r1 ≤ r2 ≤ ·· · ≤ r2009 the lengths of the red sides,

and w1 ≤ w2 ≤ ·· · ≤ w2009 the lengths of the white sides.

Then there existk indecesj such that we can form a non-degenerated triangle
with side lengthsb j, r j, w j .

2. A2 (EST) Let a, b, c be positive real numbers such that1
a + 1

b + 1
c = a + b + c.

prove that

1
(2a + b + c)2 +

1
(2b + c + a)2 +

1
(2c + a + b)2 ≤ 3

16
.

3. A3 (FRA) IMO5 Determine all functionsf from the set of positive integers to the
set of positive integers such that, for all positive integers a andb, there exists a
non-degenerate triangle with sides of lengths

a, f (b) and f (b + f (a)−1).

(A triangle isnon-degenerate if its vertices are not collinear.)

4. A4 (BEL) Let a, b, c be positive real numbers such thatab + bc + ca ≤ 3abc.
Prove that
√

a2 + b2

a + b
+

√

b2 + c2

b + c
+

√

c2 + a2

c + a
+3≤

√
2
(√

a + b+
√

b + c+
√

c + a
)

.

5. A5 (BEL) Let f be any function that maps the set of real numbers into the set of
real numbers. Prove that there exist real numbersx andy such that

f (x− f (y)) > y f (x)+ x.
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6. A6 (USA) IMO3 Suppose thats1,s2,s3, . . . is a strictly increasing sequence of
positive integers such that the subsequences

ss1,ss2,ss3, . . . and ss1+1,ss2+1,ss3+1, . . .

are both arithmetic progressions. Prove that the sequences1,s2,s3, . . . is itself an
arithmetic progression.

7. A7 (JAP) Find all functionsf from the set of real numbers into the set of real
numbers which satisfy for all realx, y the identity

f (x f (x + y)) = f (y f (x))+ x2.

8. C1 (NZL) Consider 2009 cards, each having one gold side and one black side,
lying in parallel on a long table. Initially all cards show their gold sides. Two
players, standing by the same long side of the table, play a game with alternat-
ing moves. Each move consists of choosing a block of 50 consecutive cards,
the leftmost of which is showing gold, and turning them all over, so those with
showed gold now show black and vice versa. The last player whocan make a
legal move wins.
(a) Does the game necessarily end?
(b) Does there exist a winning strategy for the starting player?

9. C2 (ROM) For any integern ≥ 2, let N(n) be the maximal number of triples
(ai,bi,ci), i = 1, . . . ,N(n), consisting of nonnegative integersai, bi, andci such
that the following two conditions are satisfied:
(i) ai + bi + ci = n for all i = 1, . . . ,N(n),
(ii) If i 6= j, thenai 6= a j, bi 6= b j, andci 6= c j.
DetermineN(n) for all n ≥ 2.

10. C3 (RUS)Let n be a positive integer. Given a sequenceε1, . . . , εn−1 with εi = 0
or εi = 1 for eachi = 1, . . . ,n− 1, the sequencesa0, . . . ,an andb0, . . . ,bn are
constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =

{

2ai−1+3ai, if εi = 0,
3ai−1+ ai, if εi = 1,

for i = 1, . . . ,n−1,

bi+1 =

{

2bi−1+3bi, if εn−i = 0,
3bi−1 + bi, if εn−i = 1,

for i = 1, . . . ,n−1.

Prove thatan = bn.

11. C4 (NET) For an integerm ≥ 1 we consider partitions of a 2m ×2m chessboard
into rectangles consisting of cells of the chessboard, in which each of the 2m

cells along one diagonal forms a separate rectangle of side length 1. Determine
the smallest possible sum of rectangle perimeters in such a partition.
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12. C5 (NET) Five identical empty buckets of 2-liter capacity stand at the vertices of
a regular pentagon. Cinderella and her wicked Stepmother gothrough a sequence
of rounds: At the beginning of every round the Stepmother takes one liter of
water from the nearby river and distributes it arbitrarily over the five buckets.
Then Cinderella chooses a pair of neighboring buckets, empties them into the
river, and puts them back. Then the next round begins. The Stepmother’s goal is
to make one of these buckets overflow. Cinderella’s goal is toprevent this. Can
the wicked Stepmother enforce a bucket overflow?

13. C6 (BUL) On a 999× 999 board alimp rook can move in the following way:
From any square it can move to any of its adjacent squares, i.e. a square having
a common side with it, and every move must be a turn: i.e. the directions of
any two consecutive moves must be perpendicular. Anon-intersecting route of
the limp rook consists of a sequence of pairwise different squares that the limp
rook can visit in that order by an admissible sequence of moves. Such a non-
intersecting route is calledcyclic, if the limp rook can, after reaching the last
square of the route, move directly to the first square of the route and start over.
How many squares does the longest possible cyclic, non-intersecting route of a
limp rook visit?

14. C7 (RUS)IMO6 Let a1,a2, ...,an be distinct positive integers and letM be a set of
n−1 positive integers not containings = a1 +a2 + · · ·+an. A grasshopper is to
jump along the real axis, starting at the point 0 and makingn jumps to the right
with lengthsa1,a2, . . . ,an in some order. Prove that the order can be chosen in
such a way that the grasshopper never lands on any point inM.

15. C8 (AUT) For any integern ≥ 2 we compute the integerh(n) by applying the
following procedure to its decimal representation. Denoteby r the rightmost
digit of n.
1◦ If r = 0, then the decimal representation ofh(n) results from the decimal

representation ofn by removing this rightmost digit 0.
2◦ If 1 ≤ r ≤ 9 we split the decimal representation ofn into a maximal right

partR that solely consists of digits not less thanr and into the left partL that
either is empty or ends with a digit strictly smaller thanr. Then the decimal
representation ofh(n) consists of the decimal representation ofL, followed
by two copies of the decimal representation ofR−1. For instance, for the
numbern = 17,151,345,543 we will haveL = 17,151,R = 345,543, and
h(n) = 17,151,345,542,345,542.

Prove that, starting with an arbitrary integern ≥ 2, iterated application ofh pro-
duces the integer 1 after finitely many steps.

16. G1 (BEL) IMO4 Let ABC be a triangle withAB = AC. The angle bisectors of
∠CAB and∠ABC meet the sidesBC andCA at D andE, respectively. LetK
be the incenter of triangleADC . Suppose that∠BEK = 45◦. Find all possible
values of∠CAB.

17. G2 (RUS) IMO2 Let ABC be a triangle with circumcenterO. The pointsP andQ
are interior points of the sidesCA andAB, respectively. LetK, L andM be the
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midpoints of the segmentsBP, CQ, andPQ, respectively, and letΓ be the circle
passing throughK, L, andM. Suppose that the linePQ is tangent to the circleΓ .
Prove thatOP = OQ.

18. G3 (IRN) Let ABC be a triangle. The incircle ofABC touches the sidesAB and
AC at the pointsZ andY , respectively. LetG be the point where the linesBY and
CZ meet, and letR andS be the points such that the two quadrilateralsBCYR
andBCSZ are parallelograms. Prove thatGR = GS.

19. G4 (GBR) Given a cyclic quadrilateralABCD, let the diagonalsAC andBD meet
atE and the linesAD andBC meet atF . The midpoints ofAB andCD areG and
H, respectively. Show thatEF is tangent atE to the circle through the pointsE,
G, andH.

20. G5 (POL) Let P be a polygon that is convex and symmetric with respect to some
pointO. Prove that for some parallelogramR satisfyingP ⊆ R we have

|SR|
|SP|

≤
√

2.

21. G6 (UKR) Let the sidesAD andBC of the quadrilateralABCD (such thatAB
is not parallel toCD) intersect at pointP. PointsO1 andO2 are the circumcen-
ters and pointsH1 andH2 are the orthocenters of the trianglesABP andDCP,
respectively. Denote the midpoints of segmentsO1H1 andO2H2 by E1 andE2,
respectively. Prove that the perpendicular fromE1 onCD, the perpendicular from
E2 onAB, and the lineH1H2 are concurrent.

22. G7 (IRN) Let ABC be a triangle with incenterI and letX , Y , andZ be the
incenters of the trianglesBIC, CIA, andAIB respectively. Let the trianlgeXYZ
be equilateral. Prove thatABC is equilateral too.

23. G8 (BUL) Let ABCD be a circumscribed quadrilateral. Letg be a line through
A which meets the segmentBC in M and the lineCD in N. Denote byI1, I2,
andI3 the incenters of△ABM, △MNC, and△NDA, respectively. Show that the
orthocenter of△I1I2I3 lies ong.

24. N1 (AUS) IMO1 Let n be a positive integer and leta1, . . . , ak (k ≥ 2) be distinct
integers in the set{1, . . . ,n} such thatn dividesai(ai+1−1) for i = 1, . . . ,k−1.
Prove thatn does not divideak(a1−1).
Original formulation: A social club hasn members. They have the membership
numbers 1, 2,. . . , n, respectively. From time to time members send presents
to other members including items they have already receivedas presents from
other members. In order to avoid the embarrassing situationthat a member might
receive a present that he or she has sent to other members, theclub adds the
following rule to its statutes at one of its annual general meetings: “A member
with membership numbera is permitted to send a present to a member with
membership numberb if and only if a(b−1) is a multiple ofn.” Prove that, if
each member follows this rule, none will receive a present from another member
that he or she has already sent to other members.
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Alternative formulation: Let G be a directed graph withn verticesv1,v2, . . . ,vn

such that there is an edge oing fromva to vb if and only if a andb are distinct
anda(b−1) is a multiple ofn. Prove that this graph does not contain a directed
cycle.

25. N2 (PER)A positive integerN is calledbalanced, if N = 1 or if N can be written
as a product of an even number of not necessarily distinct primes. Given positive
integersa andb, consider the polynomialP defined byP(x) = (x + a)(x + b).
(a) Prove that there exist distinct positive integersa andb such that all the num-

bersP(1), P(2), . . . , P(50) are balanced.
(b) Prove that ifP(n) is balanced for all positive integersn, thena = b.

26. N3 (EST)Let f be a non-constant function from the set of positive integersinto
the set of positive integers, such thata− b divides f (a)− f (b) for all distinct
positive integersa andb. Prove that there exist infinitely many primesp such
that p divides f (c) for some positive integerc.

27. N4 (PRK) Find all positive integersn such that there exists a sequence of posi-
tive integersa1, a2, . . . , an satisfying:

ak+1 =
a2

k +1
ak−1 +1

−1

for everyk with 2≤ k ≤ n−1.

28. N5 (HUN) Let P(x) be a non-constant polynomial with integer coefficients.
Prove that there is no functionT from the set of integers into the set of inte-
gers such that the number of integersx with T n(x) = x is equal toP(n) for every
n ≥ 1, whereT n denotes then-fold application ofT .

29. N6 (TUR) Let k be a positive integer. Show that if there exists a sequencea0,
a1, . . . of integers satisfying the condition

an =
an−1 + nk

n
for all n ≥ 1,

thenk−2 is divisible by 3.

30. N7 (MON) Let a andb be distinct integers greater than 1. Prove that there exists
a positive integern such that(an −1)(bn −1) is not a perfect square.



2

Solutions



8 2 Solutions

2.1 Solutions to the Shortlisted Problems of IMO 2009

1. Notice thatb2009, r2009, andw2009 always form a triangle. In order to prove this
fact it suffices to show that the largest of these three numbers (sayw2009) is less
than the sum of the other two. Since there arebi andr j such thatw2009, bi, and
r j form a triangle we getw2009< bi + r j ≤ b2009+ r2009. This proves thatk ≥ 1.
We will now provide an example in which only one triple(bi,ri,wi) forms a
triangle. Let us setwi = 2i, ri = i, for i = 1,2, . . . ,2009; and let us definebi = i for
i ∈ {1,2, . . . ,2008}, andbi = 2i for i = 2009. We will now form trianglesT1, . . . ,
T2009so that each has one blue, one red, and one white side. Forj = 1,2, . . . ,2008
we can define the triangleTj to be the one with the sidesw j, r j+1, andb j because
2 j < j+ j+1. The sides ofT2009can bew2009= 4018,r1 = 1, andb2009= 4018.
The conditions of the problem are clearly satisfied.

2. The given condition ona, b, andc imply that abc(a + b + c) = ab + bc + ca.
Applying the inequality(X +Y + Z)2 ≥ 3(XY +Y Z + ZX) to X = ab, Y = bc,
Z = ca gives us(ab + bc + ca)2 ≥ 3abc(a + b + c) = 3(ab + bc + ca) which
means thatab + bc + ca≥ 3.
From 2a+b+c≥ 2

√

(a + b)(a + c) and two analogous inequalities we deduce:

1
(2a + b + c)2 +

1
(2b + c + a)2 +

1
(2c + a + b)2 ≤ 2(a + b + c)

4(a + b)(b + c)(c + a)

≤ 9(a + b + c)
16(ab + bc + ca)(a +b+ c)

.

The last inequality follows from 9(a + b)(b + c)(c + a) = 9(a2b + ab2 + b2c +
bc2+c2a+ca2)+18abc = 8(ab+bc+ca)(a+b+c)+(a2b+ab2+b2c+bc2+
c2a + ca2−6abc)≥ 8(ab + bc + ca)(a +b+ c).
The required inequality now follows fromab + bc + ca ≥ 3. The equality holds
if and only if a = b = c = 1.

3. Assume thatf satisfies the given requirements. Let us prove thatf (1) = 1. As-
sume thatK = f (1)− 1 > 0. Let m be the minium of f , andb any number
for which f (b) = m. Since 1,m = f (b), and f (b + f (1)−1) = f (b + K) form
a triangle we must havef (b + K) < 1+ f (b). The minimality of m implies
f (b + K) = m, and by inductionf (b + nK) = m for all n ∈ N. There exists a
triangle with sidesb + nK, f (1), and f (m), henceb + nK < f (1) + f (m) for
eachn. This contradiction impliesf (1) = 1.
The numbersa, 1 = f (1), and f ( f (a)) form a triangle for everya. Therefore
a−1 < f ( f (a)) < a +1, hencef ( f (a)) = a and f is a bijection. We now have
that f (a), f (b), and f (b + a−1) determine a triangle for alla,b ∈ N.
Let z = f (2). Clearly, z > 1. Since f (z), f (z), and f (2z − 1) form a triangle
we get f (2z−1) < f (z)+ f (z) = 2 f ( f (2)) = 4. This implies thatf (2z−1) ∈
{1,2,3}. Sincef is a bijection andf (1) = 1, f (z) = 2, we must havef (2z−1) =
3. Let us prove thatf (k) = (k−1)z− k +2 for all k ∈ N.
The statement is true for 1 and 2. Assume that it holds for all of 1, 2, . . . , k. Since
f ((k−1)z− k +2), f (z), and f (kz− k +1) form a triangle we havef (kz− k +
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1)≤ k+1. The functionf is injective hencef (kz−k+1) 6= i unlesskz−k+1=
(i− 1)z− i + 2, i.e. k + 1 = i. Thereforef (kz − k + 1) = k + 1, or f (k + 1) =
kz− k +1 and the induction is complete. Furthermore,f is increasing.
If z > 2 then 2= f (z) > f (2) = z, a contradiction. Thusz = 2 and f (k) = 2(k−
1)− k +2= k. It is easy to verify thatf (k) = k satisfies the given condition.

4. We first prove that fora,b > 0 the following inequality holds:
√

a2 + b2

2
+
√

ab ≤ a + b. (1)

After dividing both sides by
√

ab and substituting
√ a

b = x it becomes

1√
2

√

x2 +
1
x2 +1≤

(

x +
1
x

)

.

Taking squares transforms this inequality into
(

x + 1
x −2

)2 ≥ 0, which obviously
holds. The equality occurs if and only ifx = 1, ora = b.

Rewriting (1) in the form
√

a2+b2

a+b +
√

2
√

ab
a+b ≤

√
2
√

a + b and summing it with

the two analogous inequalities for the pairs(b,c) and(c,a) we obtain:
√

a2+ b2

a + b
+

√

b2 + c2

b + c
+

√

c2 + a2

c + a

+
√

2

(

√

ab
a + b

+

√

bc
b + c

+

√

ca
c + a

)

≤
√

2
(√

a + b+
√

b + c+
√

c + a
)

.

It suffices to prove that
√

ab
a+b +

√

bc
b+c +

√

ca
c+a ≥ 3√

2
. Applying the mean in-

equalityM1 ≥ M−2 to the sequence
√

ab
a+b ,

√

bc
b+c ,

√

ca
c+a gives us

√

ab
a + b

+

√

bc
b + c

+

√

ca
c + a

≥ 3

√

3
a+b
ab + b+c

bc + c+a
ca

= 3 ·
√

3abc
2(ab + bc + ca)

≥ 3√
2
.

This completes the proof of the required inequality. The equality holds if and
only if a = b = c.

5. Assume the contrary, thatf (x− f (y)) ≤ y f (x)+ x for all x,y ∈ R. Settingy = 0,
x = z+ f (0) gives f (z)≤ z+ f (0). Forx = f (y) we getf (0)≤ y f ( f (y))+ f (y)≤
y f ( f (y))+y+ f (0) hence we can conclude thaty( f ( f (y))+1) ≥ 0. This means
that if y > 0 then f ( f (y)) ≥−1, and ify < 0 then f ( f (y)) ≤−1.
If f (x) > 0 for somex, then eachy < x− f (0) must satisfyf (y)− f (0) ≤ y <
x− f (0), thereforef (y) < x. From here we conclude that−1≤ f ( f (x− f (y))) ≤
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f (x− f (y)) + f (0) ≤ y f (x) + x + f (0) andy ≥ −1−x− f (0)
f (x) . We concluded that

eachy < x− f (0) must be greater than or equal than−1−x− f (0)
f (x) which is im-

possible. Thereforef (x) ≤ 0 for all x. In particular, for all realx we have
f (x) ≤ x+ f (0)≤ x. For anyz > 0 we now havef (−1) = f [( f (z)−1)− f (z)] ≤
z f ( f (z)−1)+ f (z)−1 ≤ z( f (z)−1)+ f (z)−1 = (z+1)( f (z)−1) ≤ −z−1.
Thus eachz > 0 satisfiesz ≤− f (−1)−1 which is a contradiction.

6. Assume thatssn = an+b andssn+1 = cn+d for somea,b,c,d ∈ Z. If m > n > 0
are two integers thensm − sn = (sn+1− sn)+(sn+2− sn+1)+ · · ·+(sm− sm−1)≥
m− n because the sequencesn is increasing. Hencesn+1− sn ≤ ssn+1 − ssn = a.
Denote bym andM the minimal and maximal value ofsn+1− sn asn ∈ N. Our
goal is to prove thatM = m. Assume the contrary,m < M. If sk+1 − sk = m
for somek ∈ N we geta = ssk+1 − ssk = (ssk+1 − ssk)+ (ssk+2 − ssk+1)+ · · ·+
(ssk+1 − ssk+1−1) ≤ m ·M. Similarly if sl+1− sl = M for somel ∈ N we get that
a = ssl+1 − ssl ≥ m ·M. In particular these two inequalities imply that:

M ·m = a,
ssk+1− ssk = M, wheneversk+1− sk = m, and
ssl+1− ssl = m, whenversl+1− sl = M.

Take anyk ∈ N such thatsk+1− sk = m. ThenM = ssk+1− ssk = ck + d− (ak +
b) = (c−a)k+d−b. Furthermore, we havem = sssk +1−sssk

= (c−a)sk +d−b.
Repeating the same argument yieldsM = (c− a)ssk + d − b. Consequently the
equation(c−a)x + d−b = M has two solutionsx = k andx = ssk which yields
sk = k. Sincesk = s1 +(s2− s1)+ · · ·+(sk − sk−1) ≥ k we conclude thatsi = i
for i = 1,2, . . . ,k. ThusM = ssk+1− ssk = sk+1− sk = m, a contradiction.

7. Substitutingx = 0 in the given relation givesf (0) = f (y f (0)) for all y. Therefore
f (0) = 0, because otherwise for eachz ∈ R we could takey = z/ f (0) to get
f (z) = f (0) meaning thatf is constant (that is obviously impossible). We now
have f (x f (x)) = f (x f (x + 0)) = f (0 f (x)) + x2 = x2 and 0= f (x f (x − x)) =
f (−x f (x))+ x2 implying f (−x f (x)) = −x2. Hencef is onto.
If f (z) = 0 for somez 6= 0 we would have 0= f (z f (z)) = z2, a contradiction.
Assume thatf (x) = f (y) for somex,y ∈ R. Thenx2 = f (x f (x)) = f (x f (y)) =
f ((y− x) f (x))+ x2 giving that f ((y− x) f (x)) = 0 hencef (x) = 0 or x− y = 0.
Both cases now yieldx = y, thereforef is one-to-one.
Now we will prove that f (−x) = − f (x) for all x ∈ R. Assume thatx 6= 0
(the other case is trivial). Iff (x) > 0 there existsz such thatf (x) = z2. Since
f is injective andf (z f (z)) = z2 we conclude thatx = z f (z) hence f (−x) =
f (−z f (z)) = −z2 = − f (x). The casef (x) < 0 is similar.
On the other hand we have:

f (y f (x)) = −x2 + f (x f (x + y)) = −x2 +(x + y)2− [(x + y)2+ f (−x f (x + y))]

= y2 +2xy− f ((x + y) f (y)) = 2xy +[(−y)2+ f ((x + y) f (−y))]

= 2xy + f (−y f (x))
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which implies thatf (x f (y)) = xy. Analogously,f (y f (x)) = xy hencex f (y) =
y f (x). Hencef (x) = cx for somec ∈R. The equationf (x f (x)) = x2 implies that
c ∈ {−1,1}. Clearly, bothf (x) = x and f (x) = −x satisfy the given conditions.

8. (a) If we denote gold cards by 1, and black by 0, the entire sequence of cards
corresponds to a number in binary representation. After each of the moves,
the number decreases, hence the game has to end.

(b) We will show that second player wins a game no matter how the players
play. Consider the cards whose position (counted from the right) is divisible
by 50. There is a total of 40 such cards, and in each move exactly one of this
cards is turned over. In the beginning, all 40 of these cards are 1, and in the
end all 40 are 0, hence the second player must win.

9. Assume that(ai,bi,ci)
N
i=1 satisfy the conditions of the problem. Then

N

∑
i=1

ai ≥
N(N −1)

2
,

and similarly the two analogous inequalities hold for the sequences(bi) and(ci).
Hence 3N(N −1)/2≤ ∑N

i=1(ai +bi +ci) = nN which implies thatN ≤
[ 2n

3

]

+1.
To prove that there are sequences of length

[2n
3

]

+1 with the given properties let
us consider the following cases:
1◦ n = 3k for somek ∈ N. We can take(ai,bi,ci) = (i−1,k+ i−1,2k−2i+2)

for i = 1,2, . . . ,k+1, and(ai,bi,ci) = (3k− i+2,2k− i+1,2(i−k)−3) for
i = k +2, . . . ,2k +1.

2◦ n = 3k + 1 for somek ∈ N. Take(ai,bi,ci) = (i− 1,k + i− 1,2k− 2i + 3)
for i = 1,2, . . . ,k+1, and(ai,bi,ci) = (3k− i+2,2k− i+1,2(i−k)−2) for
i = k +2, . . . ,2k +1.

3◦ n = 3k−1 for somek ∈ N. Define(ai,bi,ci) = (i−1,k + i−1,2k−2i+1)
for i = 1,2, . . . ,k, and(ai,bi,ci) = (3k − i + 1,2k− i,2i− 2k − 2) for i =
k +1, . . . ,2k.

10. For a binary sequence(ε)n−1 = (εi)
n−1
i=1 , let us definef (u,v,(ε)n−1) = cn where

the sequence(ci)
n
i=1 is defined as:c0 = u, c1 = v, and

ci+1 =

{

2ci−1+3ci, if εi = 0,
3ci−1 + ci, if εi = 1,

for i = 1, . . . ,n−1.

The given sequences(an) and(bn) can be now rewritten asan = f (1,7,(ε)n−1),
bn = f (1,7,(ε)n−1) where(ε)n−1

i=1 is defined asε i = εn−i. Using the induction
onn we will prove thatf (1,7,(ε)n−1) = f (1,7,(ε)n−1). This is straight-forward
to verify for n = 2 andn = 3, so assume thatn > 3 and that the statement is
true for all binary sequences(ε)k of length smaller thann. Notice thatf (αu1 +
β u2,αv1 + β v2,(ε)m) = α f (u1,v1,(ε)m)+ β f (u2,v2,(ε)m) (this easily follows
by induction onm). Assuming thatεn = 0, we obtain:
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f (1,7,(ε)n) = 2 f (1,7,(ε)n−2)+3 f (1,7,(ε)n−1)

= 2 f (1,7,(ε)n−2)+3 f (1,7,(ε)n−1)

= 2 f (1,7,(ε)n−2)+3 f (7, f (1,7,(εn−1)1),(ε)n−2)

= f (23,14+3 f (1,7,(εn−1)1),(ε)n−2).

Using 14+3 f (1,7,(εn−1)1) = f (1,7,(0,εn−1)2) and 23= f (1,7,(0)1) we get

f (23,14+3 f (1,7,(εn−1)1),(ε)n−2)

= f ( f (1,7,(0)1), f (1,7,(0,εn−1)2),(ε)n−2)

= f (1,7,(ε)n).

To finish the proof, it remains to see that forεn = 1 we have:

f (1,7,(ε)n) = 3 f (1,7,(ε)n−2)+ f (1,7,(ε)n−1)

= f ( f (1,7,(1)1), f (1,7,(1,εn−1)2),(ε)n−2)

= f (1,7,(ε)n).

11. Denote by(i, j) the cells of the table, and assume that the diagonal cells(i, i)
form separate rectangles. We will prove by induction that itis possible to have
a perimeter ofpm = (m + 1)2m+2. The casem = 0 is obvious, and assume that
the statement holds for somem ≥ 0. Divide the 2m+1 × 2m+1 board into four
equal boards. Each of the two off-diagonal squares has perimeter 4·2m while the
other two can be partitioned into rectangles of total perimeter pm each. The total
perimeter is therefore equal to 2·4 ·2m +2pm = (m+2)2m+3.
Let us now prove the other direction, that the total perimeter P satisfiesP≥ (m+
1)2m+2. Assume that the table is partitioned inton rectangles in the described
way. Denote byRi the set of those rectangles that contain at least one square
from theith row. Similarly, letCi be the set of rectangles that contain the squares
from theith column. Clearly the intersectionCi ∩Ri contains only the diagonal
square(i, i). We certainly have

P = 2

(

2m

∑
i=1

|Ri|+
2m

∑
i=1

|Ci|
)

.

Let F be the collection of all subsets of rectangles in the partition. Since there
aren rectangles, we have|F |= 2n. LetFi denote the collection of those subsets
S that satisfy:(Ri \ (i, i)) ⊆ S, andCi ∩S ⊆ {(i, i)}. SinceF1, F2, . . . , F2m are
pairwise disjoint and|Fi| = 2n−|Ci|−|Ri|+2, using the Jensen’s inequality applied
to f (x) = 2−x we obtain:

2n ≥ 2n+2
2m

∑
i=1

2−|Ci|−|Ri| ≥ 2n+2 ·2m ·2− 1
2m ∑(|Ci |+|Ri|) = 2n+m+2− 1

2m · P
2 .

This yields toP
2 ≥ (m+1) ·2m+1 which is the relation we wanted to prove.
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12. We will show that Cinderella can always make sure that after each of her moves:
(i) The total amount of water in all buckets is less than 3/2; and
(ii) The amount of water in each pair of non-adjacent bucketsis smaller than 1.
The condition (ii) ensures that the Stepmother won’t be ableto make a bucket
overflow. Both (i) and (ii) hold in the beginning of the game. Assume that they
are satisfied after thekth round, and let us prove that in the roundk + 1 Cin-
derella can make them both hold again. Denote the buckets by 1, . . . , 5 (counter-
clockwise), and letxi be the amount of water in the bucketi. After thek + 1st
move of the Stepmother we havex1 + · · ·+ x5 < 5

2 andxi + xi+2 < 2 for eachi
(summation of indeces is modulo 5). It is impossible thatxi + xi+2 ≥ 1 for each
i hence we may assume thatx2 + x5 < 1. If x1 + x2+ x5 < 3

2, it would be safe for
Cinderella to empty the buckets 3 and 4. Assume therefore that x1+x2+x5 ≥ 3

2.
Hencex1 > 1

2. If both x2 + x4 ≥ 1 andx3 + x5 ≥ 1 hold then we must have
x1 ≤ 1

2, a contradiction. Assume therefore thatx2 + x4 < 1. If x2 + x3 + x4 < 3
2

she could empty 1 and 5, so assume thatx2 + x3 + x4 ≥ 3
2. This givesx3 > 1

2.
x2 + 5

2 > (x1 + x2 + x5)+ (x2 + x3 + x4) ≥ 6 which yieldsx2 > 1
2. Therefore at

least one ofx1+x4 < 1 orx3+x5 < 1 holds, say the first one. Thus, if Cinderella
empties the buckets 2 and 3 the condition (ii) will be satisfied. (i) will hold as
well becausex2 + x3 > 1

2 + 1
2 > 1.

13. Letk ≥ 3. We will prove that the longest cyclic route in a(4k− 1)× (4k− 1)
board has length 4· [(2k−1)2−1]. Let us label the cells with 1, 2, 3, 4 using the
pattern from the figure 1, so that the top-left corner is labeled by 1.

3 3 34 4 4

3 3 34 4 4

1 1 12 2 2

1 1 12 2 2

-

-
6

-
6

6
•

•⋆ ◦

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

Figure 1 Figure 2

Any four consecutive jumps lend on squares with different labels. Therefore,
each cyclic path has equal number of squares of each label. The label 4 appears
exactly(2k−1)2 times, but we will prove now that the limp rook can’t visit allof
them. Assume the contrary – that it is possible for a cyclic route to pass through
all the squares labeled by 4. If we paint all such squares alternately black and
white so that the top left square is black, we see that the number of black squares
is by 1 bigger than the number of white ones. Therefore, a cyclic route has two
consecutive black squares. Assume that these squares are those denoted by•.
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Without loss of generality we may assume that the part of the route is as shown
in the figure 1. Since the route always visits 4,3,1,2 in that order, immediately
before visiting⋆, the rook has to land on the cell labeled by 2 that is exactly
below ⋆. The rook has to leave⋆ by visiting 3 exactly to the right of it. Each
point of the two-dimensional plane must be all the time either to the left or to
the right of the rook when it is passing next to it. However, this is not the case
with the point marked by◦. A contradiction. Therefore the rook can visit at most
4· ((2k−1)2−1) squares in a cyclic route. The figure 2 shows how it is possible
to recursively make a route that only omits the central square and visits all the
other squares labeled by 4.

14. We will prove the statement by induction. The casen = 1 is trivial, so let us
assume thatn > 1 and that the statement holds for 1, 2,. . . , n−1. Assume that
a1 < · · · < an. Let m ∈ M be the smallest element. Consider the following cases:
1◦ m < an: If an 6∈ M then if the grasshopper makes the first jump of sizean

the problem gets reduced to the sequencea1, . . . , an−1 and the setM \ {m},
which immediately follows by induction. Let us assume thatan ∈ M. Con-
sider the followingn−1 pairs:(a1,a1+an), . . . , (an−1,an−1+an). All num-
bers from these pairs belong to then−2-element setM \{an}, hence one of
these pairs, say(ak,ak + an), has both of its members outside ofM. If the
first two jumps of the grasshopper areak, andak + an, it has jumped over at
least two members ofM: m andan. There are at mostn−3 more elements
of M to jump over, andn−2 more jumps, so the claim follows by induction.

2◦ m ≥ an: By induction hypothesis the grasshopper can start from thepoint
s = a1 + · · ·+ an, maken− 1 jumps of sizesa1, . . . , an−1 to the left, and
avoid all the points ofM \ {m}. If it misses the pointm as well, then we are
done (first make a jump of sizean and reverse the previously made jumps).
Suppose that after making the jumpak the grasshopper landed at sitem. If it
changes the jumpak to the jumpan, it will miss the sitem and all subsequent
jumps will lend outside ofM becausem is the left-most point.

15. For eachi = 0,1, . . . ,9 denote byNi the set of all finite strings whose terms are
from {i, i+1, . . . ,9} (the empty stringφ belongs to each ofNi). Define functions
mi : Ni →N recursively: For eachx ∈ N9 we setm9(x) = 1+ the number of digits
of x (setm9(φ) = 1). Oncem9, . . . , mi+1 are defined we constructmi as: Write
eachx ∈ Ni in the formx = x0ix1i · · ·xt−1ixt wherex0, . . . ,xt ∈ Ni+1, and let

mi(x) =
t

∑
s=0

4mi+1(xs).

Let us prove thatm = m0 satisfiesm(h(n)) < m(n) whenevern 6= φ . If the last
digit of n is 0, thenn = l00l1 · · ·0lt0 for somel0, . . . , lt ∈N1 andm(n)−m(h(n))=
4m1(φ) > 0. Assume thatn = Ler(d +1) for 9 ≥ d ≥ e ≥ 0 andr ∈ Nd+1. If
L ∈ Ni for somei < e thenL = l0il1i · · · ilt with l0, . . . , lt ∈ Ni+1. Denoten′ =
lter(d +1). Thenh(n′) = lterdrd andmi(n)−mi(h(n)) = 4mi+1(n

′) −4mi+1(h(n′)).
To prove thatm(n) > m(h(n)) it suffices to prove thatmi+1(n′) > mi+1(h(n′)).
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Repeating this argument we reduce our problem to the casei = e. There arel0,
. . . , lt , r ∈ Nd+1 such thatn = l0e · · ·elter(d +1). For e = d we need to prove

that 0< md(n)−md(h(n)) = 4md+1(r(d+1))−2·4md+1(r). This inequality suffices
even in the casee < d becauser ∈ Nd+1 implies

me+1(r(d +1)) = 4...4md (r(d+1))
, and me+1(rdrd) = 4...4md (rdrd)

where 4 appearsd − e− 1 times in the exponents. Ifd + 1 = 9 thenmd(n)−
md(h(n)) = 4k+1 − 2 · 4k > 0 wherek is the number of digits ofr. If d < 8
then we can writer = r0(d +1) · · ·(d +1)rs for somer0, · · · ,rs ∈ Nd+2. We get

md+1(r) = 4md+2(r0) + · · ·+ 4md+2(rs) andmd+1(r(d +1)) = md+1(r) · 44md+2(φ )
.

Hencemd(n)−md(h(n)) = 4md+1(r)(44md+2(φ ) −2) > 0.
Therefore the functionm is positive and decreasing on the sequencen, h(n),
h(h(n)), . . . , forcing this sequence to eventually become equal toφ . The only
way this can occur is if the last terms of the sequence are 1, 00, 0, φ .

16. Denote byI andL the incenters of△ABC and△BDA. From∠ALI = ∠LBA +
∠LAB = 45◦ we see thatAL‖EK. Let L′ be the intersection ofDK andBI. From
∠DL′I = ∠BID −∠IDK = ∠A/4 = ∠LAI we conclude thatA, L, D, and L′

belong to a circle. Hence∠LAL′ = 180◦−∠LDL′ = 90◦. Now consider△AKL′.
The segmentKE is the altitude fromK and∠KAE = ∠KL′E. We will now prove
that this is equivalent toE being the orthocenter or△AKL′ being isosceles (with
KA = KL′). Denote byP andQ the intersections ofL′E andAE with AK andKL′

respectively. IfKA = KL′ then the statement is obvious. If this is not the case,
thenPQ intersectsAL′ at some pointM. ThenKE is the polar line of the pointM
with respect to the circumcirclek of PQL′A, and sinceMA ⊥ KE we conclude
thatMA contains the center ofk. Then we must have∠APL′ = ∠AQL′ = 90◦.
If E is the orthocenter of△KL′A then from△ABP we conclude that 3∠A/4+
45◦−∠A/4 = 90◦ which yields to∠A = 90◦. If KA = KL′, this together with
KA = AL = AL′ implies that△AKL′ is equilateral and∠A/4 = ∠KL′E = 60◦−
∠LL′A = 15◦. That means that∠A = 60◦.
It is easy to verify that∠A ∈ {60◦,90◦} implies∠BEK = 45◦.

17. FromMK‖AB andML‖AC we get∠KML = ∠BAC. Also, ∠AQP = ∠KMQ =
∠MLK, because of the assumption thatPQ is a tangent toΓ . Therefore△AQP∼
△MLK hence

AQ
AP

=
ML
MK

=
PC
QB

,

andAQ ·QB = AP ·PC. The quantity on the left-hand side of the last equality
represents the power of the pointQ with respect to the circumcircle of△ABC and
it is equal toOA2−OQ2. Similarly, AP ·PC = OA2−OP2. ThusOA2−OP2 =
OA2−OQ2 implying OP = OQ.

18. Consider the excircleka corresponding to the vertexA. Let X be the point of
tangency of the incirclek andBC, andXa the point of tangency ofka andBC.
Similarly, let us denote byZa andYa the points of tangency ofka with AB and
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AC. Then we haveZZa = ZB + BZa = BX + BXa = BX +CX = BC = ZS. We
used the fact thatBXa = CX . On the other hand,CYa = CXa = BX = BZ = CS.
Denote bys the degenerated circle with centerS and radius 0. PointsZ andC
belong to the radical axis of the circless andka. Similarly, we prove thatB andY
belong to the radical axis of the circleska andr, wherer is the circle with center
R and radius 0. ThusG is the radical center ofr, s, andka, henceGS = GR.

19. Denote byM andN respectively the points symmetric toE with respect toG
andH. Notice that∠FAM = ∠FAC+∠BEC = ∠EBC+∠CEB = ∠FCE. From
△FDC ∼△FBA we haveFA

FC = AB
CD and from△AEB ∼△DEC we haveAB

DC =
BE
CE . Therefore

FA
FC

=
BE
CE

=
AM
CE

hence△FAM ∼△FCE and∠AFM = ∠EFC. Similarly we prove that△FDN ∼
△FBE and∠AFN = ∠EFC. This implies thatF, N, andM are colinear. SinceH
andG are the midpoints ofEN andEM it suffices to show thatFE is the tangent
to the circumcircle of△NEM. From△FDN ∼△FBE we haveFD

FB = FN
FE , while

the similarity△FAM ∼△FCE implies thatFC
FA = FE

FM . Using△FDC ∼△FBA
again, we finally obtainFD

FB = FC
FA . Thus FE

FM = FN
FE and FE is tangent to the

circumcircle of△MEN.

20. LetA andB be two vertices of the poly-
gon P for which S△AOB is maximal.
Let C and D be the points symmet-
ric to A andB with respect toO. Let
WXYZ be the parallelogram such that
A, B, C, and D are the midpoints of
XY , YZ, ZW , andWX , andWX‖OA,
XY‖OB. The polygonP is contained
insideWXYZ. Let U , V , M, andN be

W D X

Z B Y

C A

N

U

V

M

V ′
N′

O

the intersections ofP with XZ andWY such that the order of points on lines is
W −M−N−Y andX −U −V −Z. There are two parallel linesu andv through
U andV such thatP is within the strip betweenu andv; similarly, there are two
parallel linesn ∋ N andm ∋ M such thatP is within the strip between these two
lines. The linesu, v, n, andm determine another parallelogramEFGH. We will
prove thatSEFGH ≤

√
2SP or SWXY Z ≤

√
2SP.

By performing affine transformations to the plane, the ratios of the areas of the
figures don’t change, and we can choose the transformations in such a way that
WXYZ maps to a square. ThenEFGH maps to a rectangle, andP maps to an-
other convex polygon. We may thus assume thatWXYZ was a square to start
with, andEFGH was a rectangle. LetV ′ be the projection ofV toWZ, and letN′

be the projection ofN to Y X . Denotea = OA, x = ZV ′, andy = Y N′. ThenSP ≥
SANBVCMDU = 4S△COV + 4S△OAN = 2a(a− x)+ 2a(a− y) = 2a(2a− (x + y)).
We also haveSW XY Z = 4a2 and SEFGH = 4OV ·ON = 8(a− x)(a − y). If we
assume thatSWXY Z >

√
2SP andSEFGH >

√
2SP, multiplying these two inequal-



2.1 Copyright c©: The Authors and Springer 17

ities gives us: 32a2(a−x)(a−y) > 8a2(2a−(x+y))2, which after simplification
becomes 4xy > (x + y)2, or equivalently(x− y)2 < 0, a contradiction.

21. Assume that the perpendicular fromE1 to CD and the perpendicular fromE2 to
AB intersectH1H2 at S1 andS2 respectively. We will prove thatH1S1 : H1H2 =
H1S2 : H1H2 which will imply S1 = S2. Let M1 = S1E1∩PH1 andM2 = S2E2∩
PH2. It suffices to establish the relationH1M1 : H1P = PM2 : H2P.
Let us denote byN1 andN2 the mid-
points ofPH1 andPH2. Without loss of
generality, assume thatM1 is between
P andN1, and consequentlyN2 is be-
tweenP andM2. Our goal is to prove
that H1M1

H1N1
= PM2

PN2
, or after subtracting 1

from both sides:
M1N1

H1N1
=

M2N2

PN2
. (1)

From E1M1‖PH2 and E2M2‖PH1 we
conclude that ∠N2M2E2 = 180◦ −
∠E1M1N1. Observe thatE1N1‖PO1

A

D

B

C

P

Q

O1

H1

O2

H2
E1

E2

M1

M2
N1

N2

S1

hence∠M1E1N1 = ∠O1PH2 = ∠DPH2−∠APO1. From△DCP we obtain the
equality ∠DPH2 = 90◦ −∠CDP and from△ABP we have∠APO1 = 90◦ −
∠ABP. Therefore∠M1E1N1 = ∠ABP−∠CDP. In a similar way we prove that
∠M2E2N2 = ∠O2PH1 = ∠ABP−∠CDP which gives us∠M1E1N1 = ∠M2E2N2.
Applying the sine theorem to△E2N2M2 and△E1N1M1 we get M1N1

E1N1
= M2N2

E2N2
.

Hence in order to prove (1) we need to verify thatE1N1
H1N1

= E2N2
PN2

, or equivalently,
PO1
PH1

= PO2
PH2

. FromPH1 = 2O1X whereX is the midpoint ofAB we see thatPO1
PH1

=
AO1

2O1X = 1
2cos∠AO1X = 1

2cos∠APB . Analogously we prove thatPO2
PH2

= 1
2cos∠CPD and

this completes the proof of the required statement.

22. Let us denote byα, β , andγ the angles of△ABC. Then we calculate∠BIX =
∠XIC = 1

2∠BIC = 45◦+ α
4 and similar two formulas hold for∠ZIX and∠ZIY .

If we denote byP andQ the feet of perpendiculars fromI to CX andCY then
IP = IQ. Since∠PIX = ∠PIC−∠XIC = (90◦−∠XCI)−45◦− α

4 = 45◦− α
4 −

γ
4 = β

4 , and similarly∠QIY = α
4 , we deduce thatIX/cosα

4 = IY/cosβ
4 . If we

denote the previous quantity byρ , we getIX = ρ cosα
4 , IY = ρ cosβ

4 , and analo-
gously,IZ = ρ cosγ

4. Applying the cosine theorem to△ZIX gives us thatZX2−
ZI2 = IX2−2IX ·ZI ·cos

(

90◦+ α+γ
4

)

= ρ2
(

cos2 α
4 +2cosα

4 cosγ
4 sin α+γ

4

)

. Us-
ing the similar relation forZY 2−ZI2 and the assumptionZX = ZY we get:

0 = cos2
α
4
−cos2

β
4

+2cos
α
4

sin
α
4

cos2
γ
4
−2cos

β
4

sin
β
4

cos2
γ
4

+2cos2
α
4

sin
γ
4

cos
γ
4
−2cos2

β
4

sin
γ
4

cos
γ
4

=

(

cos2
α
4
−cos2

β
4

)

·
(

1−sin
γ
2

)

+cos2
γ
4

(

sin
α
2
−sin

β
2

)

.
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We now use the formulas cos2 X −cos2Y = 1
2(cos(2X)−cos(2Y )) = −sin(X +

Y )sin(X −Y ), and sinX −sinY = 2sinX−Y
2 cosX+Y

2 to obtain:

0 = sin
α −β

4

(

2cos2
γ
4

cos
α + β

4
−
(

1−sin
γ
2

)

sin
α + β

4

)

. (1)

Let E be the expression from the last parenthesis. Sinceα+β
4 = 45◦− γ

4, then:
√

2E =
(

1+cos
γ
2

)(

cos
γ
4

+sin
γ
4

)

−
(

1−sin
γ
2

)(

cos
γ
4
−sin

γ
4

)

= 2sin
γ
4

+cos
γ
2

cos
γ
4
−sin

γ
2

sin
γ
4

+cos
γ
2

sin
γ
4

+sin
γ
2

cos
γ
4
.

Hence
√

2E = 2sinγ
4 + cos3γ

4 + sin 3γ
4 = 2sinγ

4 +
√

2sin
(

45◦+ 3γ
4

)

. Clearly,

the last quantity is positive as the sin is positive functionon(0,180◦). Thus from
(1) we getα = β . Similarly, we prove thatβ = γ and△ABC is equilateral.

23. Denote byk1, k2, andk3 the incircles
of △ABM, △MNC, and △ADN, re-
spectively. LetR, S, T be the points
of tangency ofk1 with AB, BM, and
MA; U , V , W the tangency points
of k3 with ND, DA, and AN; and
P and Q the points of tangency of
tangents fromC to k3 and k1 dif-
ferent thanCD and CB, respectively.
Assume that the configuration of the
points is as in the picture. From

A

D

B

C
N

M

I1
R

T

SW

I3V

U

I2

CD+AB = CB+DA we getCU +UD+AR+RB = DV +VA+BS +SC which
together withDU = DV , AR = AW +WT = AV +WT , andBR = BS implies that
CU +WT = CS = CQ. On the other handCU +W T = CP +WT ≥ CP + PQ
becausePQ ≤W T and the equality holds if and only ifPQ is a common tangent
of the circlesk1 andk3. We conclude thatCQ≥CP+PQ. The triangle inequality
yieldsCQ = CP+ PQ henceC, P, andQ are colinear.
We now have that∠I3CI1 = 1

2∠DCB = 90◦−∠I2CM =∠I3I2M, henceC belongs
to the circle circumscribed about△I1I2I3. The Simson’s line corresponding to
C bisects the segmentCH, whereH is the orthocenter of△I1I2I3. It remains to
notice that the lineg is the image of the Simson’s line under the homothety with
centerC and coefficient 2. Indeed, the reflections ofC with respect toI1I2 and
I2I3 belong tog becauseI1I2 andI2I3 are the bisectors of∠CMN and∠CNM.

24. Assume the contrary thataiai+1 ≡ ai (modn), for i = 1,2, . . . ,k (summation of
indices is modulok). The casek = 2 is trivial as we havea1a2 ≡ a1 anda1a2 ≡
a2 which yields to immediate contradictiona1 ≡ a2. Here and in the sequel,
all of the congruences are modulon. Assume that 1< i < k. Multiplying the
congruenceaiai+1 ≡ ai by a1 · · ·ai−1 we geta1 · · ·ai+1 ≡ a1 · · ·ai. By induction
we get thata1 · · ·ak ≡ a1. Since everything is cyclic in analogous way we obtain
a1 · · ·ak ≡ a2 which yields toa1 ≡ a2 and this is a contradiction.
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25. (a) To eachn ∈ N we can correspond a sequence(s1, . . . ,s50) of numbers from
{0,1} such that

si =

{

0, if n + i is balanced,
1, if n + i is not balanced.

Since there are at most 250 sequences that correspond to natural numbers,
we see that there area,b∈N that correspond to the same sequence. For such
a choice ofa andb the numberP(i) is balanced for eachi ∈ {1,2, . . . ,50}.

(b) Assume thata < b and thatP(n) = (n+a)(n+b) is balanced for eachn∈N.
For eachk > a, consider the numberx = k(b− a)− a. ThenP(x) = (b−
a)2k(k + 1) is balanced, which means thatk andk + 1 areequibalanced (if
one is balanced then so is the other) wheneverk > a. Then all numbers
greater thana are equibalanced which can’t be true, as squares are balanced
but primes are not.

26. Assume the contrary: There are finitely many prime numbers p1, p2, . . . , pm

such that no other prime can be a divisor off (n) asn ∈ N. Assume thatα1, . . . ,
αm are non-negative integers for whichf (1) = pα1

1 · · · pαm
m . For any sequence

β = (β1, . . . ,βm) satisfyingβ1 > α1, . . . , βm > αm, consider the numberaβ =

pβ1
1 · · · pβm

m . Assume thatf (aβ +1) = pγ1
1 · · · pγm

m , for someγ1, · · · , γm ∈ N0. Since
aβ | f (aβ +1)− f (1), we can conclude thatγ1 = α1, . . . , γm = αm hencef (aβ +
1) = f (1). If n is a positive integer for whichf (n) 6= f (1), thenaβ + 1− n |
f (aβ +1)− f (n) = f (1)− f (n). This relation has to hold for every sequenceβ
satisfyingβ1 > α1, . . . , βn > α1, which is impossible.

27. We will prove thatn ≤ 4 by showing that there is no sequence of length 5, and
that there is a sequence of length 4 satisfying the conditions.
Assume thata1, . . . , a5 is a sequence of length 5. If 2∤ ak for somek ≤ 3, from
a2

k+1 +1 = (ak +1)(ak+2+1) we see that 2∤ ak+1 as well. Notice thata1 anda2

are even. Indeed, if 2∤ ak for k ∈ {1,2}, then 2∤ ak+1 and 2∤ ak+2. We then have
a2

k+1 +1≡ 2 (mod 4) while 4| (ak +1)(ak+2+1), which is contradiction.
Sincea1 anda2 are even, we get froma2

2+1= (a1+1)(a3+1) thata3 is even as
well. We now havea3+1 | a2

2 +1 anda2+1 | a2
3 +1. Let us prove that there are

no two positive even integersx andy satisfyingx +1 | y2 +1 andy +1 | x2 +1.
Assume the contrary, that(x,y) is one such pair for whichx + y is minimal and
x ≥ y. Let d = gcd(x + 1,y + 1). Fromd | x + 1 one getsd | x2 −1. Sinced |
y+1 | x2 +1 we derive thatd | (x2 +1)− (x2−1) = 2. Sincex+1 is odd we see
thatd = 1. Thereforex + 1 | y2 + 1+ x2−1 = x2 + y2 andy + 1 | x2 + y2 imply
(x + 1)(y + 1) | x2 + y2. There existsm ∈ N such thatm(x + 1)(y + 1) = x2 +
y2. Consider the quadratic polynomialP(λ ) = λ 2−m(y +1)λ −m(y +1)+ y2.
SinceP(x)= 0, there exists a positive integerx′ such thatP(λ )= (λ −x)(λ −x′).
Fromx+x′ = m(y+1) andxx′ = y2−m(y+1) we get thatx′ is even andy2+1=
(x+1)(x′+1). We now must havex′ < y≤ x, hence(x′,y) is another pair of even
natural numbers such thatx′ +1 | y2 +1 andy +1 | x′2 +1, a contradiction.
One sequence of length 4 isa1 = 4, a2 = 33,a3 = 217,a4 = 1384.
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28. Assume that there existsT : Z → Z and a polynomialP with integer coefficients
such thatT n(x) = x has exactlyP(n) solutions for eachn ∈ N. Fork ∈ N denote
by B(k) the set of thosex such thatT k(x) = x butT l(x) 6= x for all 0≤ l < k. Take
anyx ∈ A(n)∩B(k), and assume thatn = ak + b, for a ∈ N0 and 0≤ b ≤ k−1.
Thenx = T n(x) = T b(T ak(x)) = T b(x). We conclude thatb = 0 andk | n. Hence
A(n) =

⋃

k|n B(k) and moreover

|A(n)| = ∑
k|n

|B(k)|.

Assume now thatx ∈ B(n), and consider the sequence{T i(x)}n−1
i=0 . EachT i(x)

belongs toA(n) sinceT i(x) = T i(T n(x)) = T n(T i(x)). If T i(x) = T i+ j(x) for
0≤ i≤ n−1 and 0≤ j ≤ n−1, thenx = T n(x) = T n−i(T i(x)) = T n−i(T i+ j(x)) =
T n+ j(x) = T j(T n(x)) = T j(x) which means thatj = 0. Therefore,T i1(x) 6=
T i2(x) wheneveri1 6= i2 andi1, i2 ∈ {0,1, . . .n−1}. In addition, each ofT i(x)
belongs toB(n). This means thatB(n) partitions into sequences ofn elements in
each, and thusn | B(n).
Let p be a prime number. We haveP(p) = |A(p)| = |B(1)|+ |B(p)|. If q is
also prime, thenP(pq) = |B(1)|+ |B(p)|+ |B(q)|+ |B(pq)| henceP(pq) ≡
|B(1)|+ |B(q)| (mod p). However, fromP(pq) ≡ P(0) (mod p) we get that
P(0)− |B(1)| − |B(q)| is divisible by p. If we fix q, this remains to hold for
each primep. ThereforeP(0) = |B(1)|+ |B(q)| = P(q). However, this is now
true for every primeq, henceP must be constant, contrary to our assumptions.

29. For eachk ∈ N there existqk ∈ Z and a polynomialPk(x) of degreek−1 with
integer coefficients such thatxPk(x) = xk +Pk(x−1)+qk. Indeed, the coefficients
of Pk(x) = ck−1xk−1 + · · ·+ c0 form a system of linear equations which we can
explicitly solve (we can see thatck−1 = 1). The sequencebn = an−Pk(n) satisfies
the recursive relationbn =

bn−1
n − qk

n . Inductively we prove thatbn = b0
n! −

qk
n! ·

∑n−1
i=0 i!, hencean−Pk(n) = a0−Pk(0)

n! − qk
n! ·∑n−1

i=0 i!. All of an−Pk(n)∈Z, and|an−
Pk(n)| ≤ |a0−Pk(0)|

n! + |qk|
n + |qk| ·∑∞

i=0
1
i2
→ 0. Hence we conclude thata0 = Pk(0)

andqk = 0.
We will finish the proof by showing thatqk is even only whenk ≡ 2 (mod 3).
We start with the equalityΓk(x) = xPk(x)− xk −Pk(x−1)− qk = 0 and use the
fact thatx(x + 1)Γk(x)−Γk+1(x)−Γk+2(x) = 0. After simplifying this becomes
equivalent toxTk(x) = Tk(x−1)+ 2xPk(x−1)+ 2xqk − (qk + qk+1 + qk+2), for
Tk(x) = x(x+1)Pk(x)−Pk+1(x)−Pk+2(x)−qkx. ThereforexTk(x)−Tk(x−1)≡
qk +qk+1+qk+2 (mod 2). For each polynomialf one of the two identities hold:
either f (x) ≡ x (mod 2) for allx ∈ Z, or f (x) ≡ 0 (mod 2) for allx ∈ Z. Since
xTk(x)− Tk(x− 1) is a constant polynomial modulo 2, it must be 0, andqk +
qk+1 + qk+2 = 0. We can easily calculateq1 = −1, andq2 = 0, and now by
induction it is straight-forward to establishqk ≡ 0 (mod 2) if and only ifk ≡ 2
(mod 3).

30. We will prove a stronger statement by assuming thata andb are perfect squares.
Assume that each ofρn =

√

(an −1)(bn −1) is an integer. Consider the Taylor
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representation off (x) = (1−x)1/2 = ∑∞
k=0 αkxk for x ∈ (−1,1) (the sequenceαk

is fixed here). There exist real numbers(ck,l)k,l≥0 such that

g(x,y) = (1− x)
1
2 (1− y)

1
2 = ∑

k,l≥0

ck,lx
kyl , for all x,y ∈ (−1,1). (1)

Thereforeρn = ∑k,l≥0 ck,l

(√
ab/(akbl)

)n
. Takek0, l0 ∈ N for which ak0 >

√
ab

andbl0 >
√

ab. Consider the polynomialP(x)= ∏k0
k=0 ∏l0

l=0(a
kblx−

√
ab). There

ared0, . . . ,dk0l0 ∈ Z such thatP(x) = ∑k0l0
i=0 dixi. For eachn ≥ 0 denote

σn =
k0l0

∑
i=0

diρn+i = ∑
k,l≥0

(√
ab

akbl

)n

ck,lP

(√
ab

akbl

)

= ∑
k>k0 or l>l0

γk,l

(√
ab

akbl

)n

,

whereγk,l = ck,lP
(√

ab/(akbl)
)

. The series forσn is absolutely convergent be-

cause it is a finite linear combination of absolutely convergent series inρn+i.
Since

√
ab/(akbl) < max{1/a,1/b} ≤ 1/2 thenσn < 1

2σn−1. This means that
limn→∞ σn = 0, and since all ofσn are integers there existsN such thatσn = 0
for n ≥ N. Forn ≥ N we have∑k0l0

i=0 diρn+i = 0.
Assume first thatak 6= bl for each pair(k, l) of positive integers. Solving the
system of recursive equations for(ρn)n≥N we find constantsek,l for 0≤ k ≤ k0,

0≤ l ≤ l0 such thatρn = ∑k0
k=0 ∑l0

l=0 ek,l

(√
ab/(akbl)

)n
. This together with (1)

implies that if (x,y) = (1/an,1/bn) for somen ≥ N then∑∞
k=0 ∑∞

l=0 ck,lxkyl =

∑k0
k=0 ∑l0

l=0 ek,lxkyl. These two are Taylor series forg(x,y) and have to be the
same. Henceck,l = ek,l if k ≤ k0 or l ≤ l0. If either k > k0 or l > l0 thenck,l =
0. We conclude thatg(x,y) has a finite Taylor expansion around 0, which is
impossible.
In the case that there arek andl such thatak = bl , there would exist an integerp
such thata = pl , andb = pk. In a similar way we get a contradiction by proving
the finiteness of the Taylor expansion of(1− xl)1/2(1− xk)1/2.





A

Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation ofset theory, algebra, logic,
geometry (including vectors), analysis, number theory (including divisibility and
congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement
of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

◦ B(A,B,C), A−B−C: indicates the relation ofbetweenness, i.e., thatB is be-
tween A and C (this automatically means thatA,B,C are different collinear
points).

◦ A = l1∩ l2: indicates thatA is the intersection point of the linesl1 andl2.

◦ AB: line throughA andB, segmentAB, length of segmentAB (depending on
context).

◦ [AB: ray starting inA and containingB.

◦ (AB: ray starting inA and containingB, but without the pointA.

◦ (AB): open intervalAB, set of points betweenA andB.

◦ [AB]: closed intervalAB, segmentAB, (AB)∪{A,B}.

◦ (AB]: semiopen intervalAB, closed atB and open atA, (AB)∪{B}.
The same bracket notation is applied to real numbers, e.g.,[a,b) = {x | a ≤ x <
b}.

◦ ABC: plane determined by pointsA,B,C, triangleABC (△ABC) (depending on
context).

◦ [AB,C: half-plane consisting of lineAB and all points in the plane on the same
side ofAB asC.

◦ (AB,C: [AB,C without the lineAB.
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◦ 〈−→a ,
−→
b 〉, −→a ·−→b : scalar product of−→a and

−→
b .

◦ a,b,c,α,β ,γ: the respective sides and angles of triangleABC (unless otherwise
indicated).

◦ k(O,r): circlek with centerO and radiusr.

◦ d(A, p): distance from pointA to line p.

◦ SA1A2...An , [A1A2 . . .An]: area ofn-gonA1A2 . . .An (special case forn = 3, SABC:
area of△ABC).

◦ N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers (re-
spectively).

◦ Zn: the ring of residues modulon, n ∈ N.

◦ Zp: the field of residues modulop, p being prime.

◦ Z[x], R[x]: the rings of polynomials inx with integer and real coefficients respec-
tively.

◦ R∗: the set of nonzero elements of a ringR.

◦ R[α], R(α), whereα is a root of a quadratic polynomial inR[x]: {a+bα | a,b ∈
R}.

◦ X0: X ∪{0} for X such that 0/∈ X .

◦ X+, X−, aX +b, aX +bY : {x | x ∈ X ,x > 0}, {x | x ∈ X ,x < 0}, {ax+b | x ∈ X},
{ax + by | x ∈ X ,y ∈Y} (respectively) forX ,Y ⊆ R, a,b ∈ R.

◦ [x], ⌊x⌋: the greatest integer smaller than or equal tox.

◦ ⌈x⌉: the smallest integer greater than or equal tox.

The following is notation simultaneously used in differentconcepts (depending on
context).

◦ |AB|, |x|, |S|: the distance between two pointsAB, the absolute value of the num-
berx, the number of elements of the setS (respectively).

◦ (x,y), (m,n), (a,b): (ordered) pairx andy, the greatest common divisor of inte-
gersm andn, the open interval between real numbersa andb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible.
However, one nonstandard abbreviation stood out as particularly convenient:

◦ w.l.o.g.: without loss of generality.

Other abbreviations include:

◦ RHS: right-hand side (of a given equation).
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◦ LHS: left-hand side (of a given equation).

◦ QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric
mean, the harmonic mean (respectively).

◦ gcd, lcm: greatest common divisor, least common multiple (respectively).

◦ i.e.: in other words.

◦ e.g.: for example.





B

Codes of the Countries of Origin

ARG Argentina
ARM Armenia
AUS Australia
AUT Austria
BEL Belgium
BLR Belarus
BRA Brazil
BUL Bulgaria
CAN Canada
CHN China
COL Colombia
CRO Croatia
CUB Cuba
CYP Cyprus
CZE Czech Republic
CZS Czechoslovakia
EST Estonia
FIN Finland
FRA France
FRG Germany, FR
GBR United Kingdom
GDR Germany, DR
GEO Georgia
GER Germany
GRE Greece

HKG Hong Kong
HUN Hungary
ICE Iceland
INA Indonesia
IND India
IRE Ireland
IRN Iran
ISR Israel
ITA Italy
JAP Japan
KAZ Kazakhstan
KOR Korea, South
KUW Kuwait
LAT Latvia
LIT Lithuania
LUX Luxembourg
MCD Macedonia
MEX Mexico
MON Mongolia
MOR Morocco
NET Netherlands
NOR Norway
NZL New Zealand
PER Peru
PHI Philippines

POL Poland
POR Portugal
PRK Korea, North
PUR Puerto Rico
ROM Romania
RUS Russia
SAF South Africa
SER Serbia
SIN Singapore
SLO Slovenia
SMN Serbia and

Montenegro
SPA Spain
SVK Slovakia
SWE Sweden
THA Thailand
TUN Tunisia
TUR Turkey
TWN Taiwan
UKR Ukraine
USA United States
USS Soviet Union
UZB Uzbekistan
VIE Vietnam
YUG Yugoslavia


