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Problems

1.1 The Fiftieth IMO
Bremen, Germany, July 10-22, 2009

1.1.1 Contest Problems

First Day (July 15)

1. Letnbe a positive integer and lat, ..., ax (k> 2) be distinct integers in the set
{1,...,n} such than dividesaj(aj;1 — 1) fori = 1,...,k— 1. Prove thath does
not divideax(a; — 1).

2. Let ABC be a triangle with circumcenté&d. The pointsP and Q are interior
points of the side€A and AB, respectively. LeK, L andM be the midpoints
of the segmentBP, CQ, andPQ, respectively, and lef be the circle passing
throughK, L, andM. Suppose that the lin@Q is tangent to the circl€ . Prove
thatOP = OQ.

3. Suppose thad;,s,,s3,... is a strictly increasing sequence of positive integers
such that the subsequences

331755275535"' and SS1+15852+17853,+17"'

are both arithmetic progressions. Prove that the sequereess, ... is itself an
arithmetic progression.

Second Day (July 16)

4. LetABC be a triangle withAB = AC. The angle bisectors of CAB and ZABC
meet the sideBC andCA at D andE, respectively. LeK be the incenter of
triangleADC . Suppose that BEK = 45°. Find all possible values of CAB.

5. Determine all function$ from the set of positive integers to the set of positive
integers such that, for all positive integarandb, there exists a non-degenerate
triangle with sides of lengths
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1 Problems
a, f(b) and f(b+ f(a)—1).

(A triangle isnon-degenerateif its vertices are not collinear.)

. Letay,ay,...,an be distinct positive integers and gt be a set oh — 1 positive

integers not containing= a; + az + - -- + an. A grasshopper is to jump along
the real axis, starting at the point 0 and makirjgmps to the right with lengths

a1, ay,...,ay in some order. Prove that the order can be chosen in such a way
that the grasshopper never lands on any poiMin

1.1.2 Shortlisted Problems

1.

Al (CZE) Find the largest possible integesuch that the following statement
is true:

Let 2009 arbitrary non-degenerated triangles be givervénydriangle the three
sides are colored, such that one is blue, one is red, and omitis. Now, for
every color separately, let us sort the lengths of the sidlesobtain

by <by<--- <bpygog the lengths of the blue sides,
ri<rp,<---<rpoog thelengths of the red sides,
and wy <wp < --- <Woog the lengths of the white sides.

Then there exisk indecesj such that we can form a non-degenerated triangle
with side length®, rj, wj.

. A2 (EST) Leta, b, c be positive real numbers such that £+ =a+b+c.

prove that

1 1 1 3
< —.
(2a+b+c)? * (2b+c+ a)ZJr (2c+a+hb)? ~ 16

. A3 (FRA) '"MO5 Determine all functiong from the set of positive integers to the

set of positive integers such that, for all positive intageandb, there exists a
non-degenerate triangle with sides of lengths

a, f(b) and f(b+ f(a)—1).

(A triangle isnon-degenerateif its vertices are not collinear.)

. A4 (BEL) Let a, b, c be positive real numbers such tradt+ bc + ca < 3abc.

Prove that
a2+ b? b2 4 ¢2 ¢+ a2
< .
\/a+b +\/ b +\/ i +3_\/§(\/a+b+\/b+c+\/c+a)

. A5 (BEL) Let f be any function that maps the set of real numbers into thefset o

real numbers. Prove that there exist real numkensdy such that

f(x—f(y)) >yf(x)+x
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A6 (USA) 'MO3 guppose thas;, sy, s, ... is a strictly increasing sequence of
positive integers such that the subsequences
515855855+ ANA Sg;11,85,41,S55415- - -

are both arithmetic progressions. Prove that the sequereess, ... is itself an
arithmetic progression.

A7 (JAP) Find all functionsf from the set of real numbers into the set of real
numbers which satisfy for all rea| y the identity

f(xf(x+y)) = f(yf(x))+x2.

. C1 (NZL) Consider 2009 cards, each having one gold side and one btigk s

lying in parallel on a long table. Initially all cards showeth gold sides. Two
players, standing by the same long side of the table, playregeith alternat-
ing moves. Each move consists of choosing a block of 50 caomiseccards,
the leftmost of which is showing gold, and turning them akngwso those with
showed gold now show black and vice versa. The last playercginomake a
legal move wins.

(a) Does the game necessarily end?

(b) Does there exist a winning strategy for the starting @tay

. C2 (ROM) For any integen > 2, letN(n) be the maximal number of triples

(ai,bi,c), i =1,...,N(n), consisting of nonnegative integess b, andc; such
that the following two conditions are satisfied:

() a+b+c=nforali=1...,N(n),

(i) If i # j, thena # aj, by # bj, andc; # c;j.

DetermineN(n) for all n > 2.

C3 (RUS)Letn be a positive integer. Given a sequeige . ., &,_1 with § =0
or & =1 for eachi = 1,... ,n— 1, the sequences,...,a, andby,...,b, are
constructed by the following rules:

a=by=1 ag=b =7,

fori=1,...,.n—1,

[ 2a4_1+3a,if §=0,
BH17\ 3aq+a,ifg=1,

b1 = {2bi1+3bi’ i eni=0 o i_ 1,...,n—1.

3bi_1+bj, if eni =1,
Prove that, = by.
C4 (NET) For an integem > 1 we consider partitions of &2« 2™ chessboard
into rectangles consisting of cells of the chessboard, iithvkach of the 2

cells along one diagonal forms a separate rectangle of sidgh 1. Determine
the smallest possible sum of rectangle perimeters in sueinteign.
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C5 (NET) Five identical empty buckets of 2-liter capacity stand atiéartices of
aregular pentagon. Cinderella and her wicked Stepmothiiirgagh a sequence
of rounds: At the beginning of every round the Stepmotheegatne liter of
water from the nearby river and distributes it arbitrarilyeo the five buckets.
Then Cinderella chooses a pair of neighboring buckets, iesigiiem into the
river, and puts them back. Then the next round begins. Then®ither’s goal is
to make one of these buckets overflow. Cinderella’s goal révent this. Can
the wicked Stepmother enforce a bucket overflow?

C6 (BUL) On a 999x 999 board dimp rook can move in the following way:
From any square it can move to any of its adjacent squares, sguare having
a common side with it, and every move must be a turn: i.e. thections of
any two consecutive moves must be perpendicularorintersecting route of
the limp rook consists of a sequence of pairwise differenases that the limp
rook can visit in that order by an admissible sequence of si08ach a non-
intersecting route is calledyclic, if the limp rook can, after reaching the last
square of the route, move directly to the first square of tigerand start over.
How many squares does the longest possible cyclic, nonsgténg route of a
limp rook visit?

C7 (RUS)'MO6 | etay, ay, ..., a, be distinct positive integers and Mtbe a set of
n— 1 positive integers not containirsg= a3 +az + - - - + an. A grasshopper is to
jump along the real axis, starting at the point 0 and makingnps to the right
with lengthsay, ay, ... ,a, in some order. Prove that the order can be chosen in
such a way that the grasshopper never lands on any pdift in

C8 (AUT) For any integen > 2 we compute the integéxn) by applying the

following procedure to its decimal representation. Dertptea the rightmost

digit of n.

1° If r = 0, then the decimal representationtgh) results from the decimal
representation af by removing this rightmost digit 0.

2° 1f 1 <r <9 we split the decimal representationrofnto a maximal right
partRthat solely consists of digits not less thaand into the left part that
either is empty or ends with a digit strictly smaller thaThen the decimal
representation dfi(n) consists of the decimal representatioriofollowed
by two copies of the decimal representatiorRof 1. For instance, for the
numbern = 17,151 345543 we will havelL = 17,151,R = 345543, and
h(n) = 17,151 345542 345 542.

Prove that, starting with an arbitrary integep 2, iterated application df pro-

duces the integer 1 after finitely many steps.

G1 (BEL) 'M%4 et ABC be a triangle withAB = AC. The angle bisectors of
/CAB and ZABC meet the side8C andCA at D andE, respectively. LeK
be the incenter of trianglADC . Suppose that BEK = 45°. Find all possible
values ofZCAB.

G2 (RUS)'MO2 | et ABC be a triangle with circumcent@. The pointsP andQ
are interior points of the sidé3A andAB, respectively. LeK, L andM be the
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midpoints of the segmenBP, CQ, andPQ, respectively, and let be the circle
passing througK, L, andM. Suppose that the lineQ is tangent to the circl€ .
Prove thaOP = OQ.

G3 (IRN) Let ABC be a triangle. The incircle 0ABC touches the sideAB and
AC at the point&Z andY, respectively. LeG be the point where the lind® and
CZ meet, and leR and S be the points such that the two quadrilate ¥R
andBCSZ are parallelograms. Prove tHaR = GS.

G4 (GBR) Given a cyclic quadrilater#BCD, let the diagonal8C andBD meet
atE and the lineAD andBC meet at~. The midpoints oAB andCD areG and
H, respectively. Show th&F is tangent aE to the circle through the points,
G, andH.

G5 (POL) Let P be a polygon that is convex and symmetric with respect to some
point O. Prove that for some parallelogra®satisfyingP C Rwe have

@<\/§
S| =

G6 (UKR) Let the sidesAD andBC of the quadrilateraRBCD (such thatAB
is not parallel taCD) intersect at poinP. PointsO; andO, are the circumcen-
ters and point$l; andH, are the orthocenters of the trianglaBP and DCP,
respectively. Denote the midpoints of segmedisl; andO,H, by E; andEy,
respectively. Prove that the perpendicular fiéronCD, the perpendicular from
E, on AB, and the lineH,H, are concurrent.

G7 (IRN) Let ABC be a triangle with incenter and letX, Y, andZ be the
incenters of the triangleBIC, CIA, andAl B respectively. Let the trianlg&YZ
be equilateral. Prove thaBC is equilateral too.

G8 (BUL) Let ABCD be a circumscribed quadrilateral. Lggbe a line through
A which meets the segmeBC in M and the lineCD in N. Denote by, I,
andlz the incenters oANABM, AMNC, andANDA, respectively. Show that the
orthocenter ofAll5l3 lies ong.

N1 (AUS)™MOL | et n be a positive integer and let, ..., a (k > 2) be distinct
integers in the sefl,...,n} such than dividesa (a1 —1) fori=1,...,k—1.
Prove thanh does not divide(a; — 1).

Original formulation: A social club hasi members. They have the membership
numbers 1, 2,.., n, respectively. From time to time members send presents
to other members including items they have already recegepresents from
other members. In order to avoid the embarrassing situtttatra member might
receive a present that he or she has sent to other membexduthadds the
following rule to its statutes at one of its annual generagtimgs: “A member
with membership numbea is permitted to send a present to a member with
membership numbdr if and only if a(b — 1) is a multiple ofn.” Prove that, if
each member follows this rule, none will receive a presemhfanother member
that he or she has already sent to other members.
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Alternative formulation: Let G be a directed graph with verticesvy, Vo, ..., V,
such that there is an edge oing framto v, if and only if a andb are distinct
anda(b — 1) is a multiple ofn. Prove that this graph does not contain a directed
cycle.

N2 (PER) A positive integeN is calledbalanced, if N = 1 or if N can be written

as a product of an even number of not necessarily distinetgwi Given positive

integersa andb, consider the polynomid® defined byP(x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integeeesdb such that all the num-
bersP(1), P(2), ..., P(50) are balanced.

(b) Prove that ifP(n) is balanced for all positive integensthena = b.

N3 (EST) Let f be a non-constant function from the set of positive integaos
the set of positive integers, such theat b divides f(a) — f(b) for all distinct
positive integers andb. Prove that there exist infinitely many primpssuch
thatp dividesf (c) for some positive integer.

N4 (PRK) Find all positive integera such that there exists a sequence of posi-
tive integersay, ap, ..., a, satisfying:

af+1
- 1+1

A+1 =

for everykwith2 <k <n-—1.

N5 (HUN) Let P(x) be a non-constant polynomial with integer coefficients.
Prove that there is no functioh from the set of integers into the set of inte-
gers such that the number of integemsith T"(x) = x is equal toP(n) for every
n> 1, whereT" denotes th@-fold application ofT.

N6 (TUR) Let k be a positive integer. Show that if there exists a sequasce
ay, ... of integers satisfying the condition

foralln>1,

_ an71+nk
=

thenk — 2 is divisible by 3.

N7 (MON) Letaandb be distinct integers greater than 1. Prove that there exists
a positive integen such thafa” — 1)(b" — 1) is not a perfect square.
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8 2 Solutions
2.1 Solutions to the Shortlisted Problems of IMO 2009

1. Notice thatoyggg r200s andwsggg always form a triangle. In order to prove this
fact it suffices to show that the largest of these three nusnfsasw.qgg) is less
than the sum of the other two. Since there larandr; such thatv,gog, bi, and
rj form a triangle we gevsoog < bj + 1 < booog+ rooos This proves thak > 1.
We will now provide an example in which only one triplb;, ri,w;) forms a
triangle. Letus set; = 2i,ri =i, fori=1,2,...,2009; and let us defirtg = i for
ie{1,2,...,2008}, andb; = 2i fori = 2009. We will now form triangledy, ...,
To009S0 that each has one blue, one red, and one white sid¢ Fby2,...,2008
we can define the trianglg to be the one with the sideg, rj.1, andb; because
2] < J + J + 1. The sides OTzoogcan beNzo()g: 4018, =1, andb2009: 4018.
The conditions of the problem are clearly satisfied.

2. The given condition om, b, andc imply thatabc(a+ b+ c) = ab+ bc+ ca.
Applying the inequality(X +Y +Z)? > 3(XY +YZ 4 ZX) to X = ab, Y = b,
Z = ca gives us(ab+ bc+ ca)? > 3abc(a+ b+ c) = 3(ab+ bc+ ca) which
means thaab+ bc+ca> 3.
From 22+b+c> 2,/(a+b)(a+ c) and two analogous inequalities we deduce:

1 N 1 N 1 - 2(a+b+c)
(2a+b+c)? (2b+c+a)? (2c+a+b)? ~ 4(a+b)(b+c)(c+a)
9(a+b+c)

< :
~ 16(ab+bc+ca)(a+b+c)

The last inequality follows from @+ b)(b+c)(c+ a) = 9(ab+ ab? + b?c+
bc? 4 c?a+ ca?) + 18abc = 8(ab+bc+ ca)(a+b+-¢) 4 (a?b + ab?+ b?c 4 bc? +
c?a+ ca? — 6abc) > 8(ab+ bc+ca)(a+b+-c).

The required inequality now follows fromb + bc+ ca > 3. The equality holds
ifandonlyifa=b=c=1.

3. Assume thaf satisfies the given requirements. Let us prove ft{a} = 1. As-
sume thatk = f(1) —1 > 0. Let m be the minium off, andb any number
for which f(b) = m. Since 1m= f(b), andf(b+ f(1) — 1) = f(b+K) form
a triangle we must havé(b+ K) < 1+ f(b). The minimality of m implies
f(b+K) =m, and by inductionf (b+ nK) = m for all n € N. There exists a
triangle with sidesb+nK, f(1), and f(m), henceb+nK < f(1) + f(m) for
eachn. This contradiction implieg (1) = 1.

The numbers, 1= f(1), and f(f(a)) form a triangle for every. Therefore
a—1< f(f(a)) <a+1, hencef(f(a)) =aandf is a bijection. We now have
thatf(a), f(b), andf(b+a— 1) determine a triangle for afl,b € N.

Let z= f(2). Clearly,z> 1. Sincef(z), f(z), and f(2z— 1) form a triangle
we getf(2z—1) < f(z) + f(z) = 2f(f(2)) = 4. This implies thatf (2z— 1) €
{1,2,3}. Sincef is a bijection and (1) = 1, f(z) = 2, we must havé (2z— 1) =
3. Let us prove thaf (k) = (k—1)z—k—+2forallk e N.

The statement is true for 1 and 2. Assume that it holds forfdl| 8, .. ., k. Since
f((k—1)z—k+2), f(z), andf(kz— k+ 1) form a triangle we havé (kz— k+
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1) <k+1. The functionf is injective hencd (kz— k+1) # i unleskz—k+1=
(i—1)z—i+2,i.e.k+1=i. Thereforef (kz—k+1) =k+1, or f(k+1) =
kz— k+ 1 and the induction is complete. Furthermairés increasing.

If z> 2 then 2= f(2) > f(2) = z, a contradiction. Thus= 2 andf (k) = 2(k—
1) —k+2=k. Itis easy to verify thaf (k) = k satisfies the given condition.

. We first prove that foa,b > 0 the following inequality holds:

2 2
\/a;b +Vab<a+h. (1)

After dividing both sides by/ab and substituting/’Er = X it becomes

11/x2+1+1< x—|—1
V2 x2 T X))
Taking squares transforms this inequality iI(lXD{— ;1( - 2)2 > 0, which obviously
holds. The equality occurs if and onlyx']L ora=h.

Rewriting (1) in the for a§132 +v2,/ 2 b S v2y/a+band summing it with

the two analogous inequalities for the pdilbsc) and(c,a) we obtain:
a2 2 b2 1 c2 2 g2
+ n +cC n Co+a
a+b b+c c+a
TRV1 Y ey .y < V2(Va+b+vbrotveTa).
a+b b+c c+a/ —

It suffices to prove tha a b+c +, /2 o > Applylng the mean in-

equalityM; > M_, to the sequencg/ b \/ %CC, m gives us

atb b+c cta
Va+ \/b+c \/c+a a4 fc . cia

3abc >3
2(ab+bc+ca) ~ 2

This completes the proof of the required inequality. Theadigiholds if and
onlyifa=b=c.

. Assume the contrary, th&fx— f(y)) <yf(x)+xforall x,y € R. Settingy = 0,

x=z+ f(0) givesf(z) <z+ f(0). Forx= f(y) we getf (0) <yf(f(y))+ f(y) <

yf(f(y))+y+ f(0) hence we can conclude thdtf (f(y)) + 1) > 0. This means

thatify > 0 thenf (f(y)) > —1, and ify < 0 thenf(f(y)) < —1.

If f(x) > 0 for somex, then eacly < x— f(0) must satisfyf (y) — f(0) <y
)

<
— (0), thereforef (y) < x. From here we conclude thatl < f(f(x— f(y))) <
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f(x— f(y)) + f(0) < yf(x) +x+ f(0) andy > ’1+;)f<0). We concluded that

eachy < x— f(0) must be greater than or equal théﬁ?‘#‘w which is im-
possible. Thereford (x) < 0 for all x. In particular, for all realx we have
f(x) <x+ f(0) < x. Foranyz> 0 we now havef (—1) = f[(f(2) —1) — f(2)] <

Zf(f(z—-1)+f(2-1<z(f(z)-1)+f(2—1=(z+1)(f(2—1) < —z—1.

Thus eaclz > 0 satisfiez < —f(—1) — 1 which is a contradiction.

6. Assume thads, = an+bandss, 11 =cn+dforsomea,b,c,d€ Z. If m>n>0
are two integers thesn — s = (11— ) + (Sii2—Sny1) +- + (Sm—Sm-1) >
m—n because the sequenggis increasing. Hencg 1 —$ < S, — S, = a
Denote bym andM the minimal and maximal value &f,;1 — S, asn € N. Our
goal is to prove thaM = m. Assume the contraryn < M. If ;1 — =m
for somek € N we geta = sq,, — Sy = (Sy.r1 — Ss) + (Syr2 — Syr1) +--- +
(Syi1 — Sse1-1) <m-M. Similarly if 5,1 — 5 = M for somel € N we get that
a=Sy,, — Sy > M-M. In particular these two inequalities imply that:

M-m=a,
Ss.+1— S = M, wheneves 1 —s =m, and
Sy+1—Sy =M, whenvers 1 —§ =M.

Take anyk € N such thats; 1 —s¢=m. ThenM = s5 1 — S = ck+d — (ak+
b) = (c—a)k+d—b. Furthermore, we have=ss, 1S, = (c—a)sc+d—b.
Repeating the same argument yieMs= (¢ — a)sg +d — b. Consequently the
equation(c —a)x+d—b =M has two solutiong = k andx = s which yields
sk=k. Sincesx=s1+ (S —51) + -+ (x— *%_1) > kwe conclude that =i
fori=1,2,...,k ThusM = g 11 — S = Sy1 — Sk = M, a contradiction.

7. Substitutingg= 0 in the given relation give§(0) = f(yf(0)) for all y. Therefore
f(0) = 0, because otherwise for eazke R we could takey = z/f(0) to get
f(z) = f(0) meaning thaff is constant (that is obviously impossible). We now
have f (xf (x)) = f(xf(x+0)) = f(0f(x)) + x*> = x? and 0= f(xf(x— X)) =
f(—xf(x)) +x2 implying f(—xf(x)) = —x2. Hencef is onto.

If f(z) = 0 for somez # 0 we would have @= f(zf(z)) = Z2, a contradiction.
Assume thatf (x) = f(y) for somex,y € R. Thenx? = f(xf(x)) = f(xf(y)) =
f((y—x)f(x)) +x? giving thatf ((y—x) f(x)) = 0 hencef (x) = 0 orx—y = 0.
Both cases now yield =y, thereforef is one-to-one.

Now we will prove thatf(—x) = —f(x) for all x € R. Assume thatx # O
(the other case is trivial). If (x) > 0 there existz such thatf (x) = Z2. Since
f is injective andf(zf(z)) = Z we conclude thak = zf(z) hencef(—x) =
f(—zf(2)) = —22 = —f(x). The casd (x) < 0 is similar.

On the other hand we have:

FYf(x) = =+ f(xf (x+y)) = =%+ (x+y)* = [(x+y)? + f (=xF (x+))]

=y +2xy— fF((x+y)f(y) = 2xy+ [(—=y)*+ F(x+y) f(-y))]
= 2xy+ f(—yf(x))
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which implies thatf (xf(y)) = xy. Analogously,f (yf(x)) = xy hencexf (y) =
yf(x). Hencef (x) = cx for somec € R. The equatiorf (xf (x)) = x? implies that
ce {—1,1}. Clearly, bothf (x) = x and f (x) = —x satisfy the given conditions.

. (a) If we denote gold cards by 1, and black by 0, the entigeisece of cards

corresponds to a number in binary representation. Aften eathe moves,
the number decreases, hence the game has to end.

(b) We will show that second player wins a game no matter havpiayers
play. Consider the cards whose position (counted from tifg)is divisible
by 50. There is a total of 40 such cards, and in each move ga@uwd! of this
cards is turned over. In the beginning, all 40 of these careld aand in the
end all 40 are 0, hence the second player must win.

. Assume thata;, by, ci)i"':1 satisfy the conditions of the problem. Then

N _
.;aZN@%iL

and similarly the two analogous inequalities hold for thgusmncesh;) and(c;).

Hence 3(N—1)/2< 3N, (& +bi+¢) = nN which implies thaN < [4'] + 1.

To prove that there are sequences of Ier{ésﬂﬁ -+ 1 with the given properties let

us consider the following cases:

1° n=3kfor somek € N. We can takéa;,b;,ci) = (i—1,k+i—1,2k—2i +2)
fori=1,2,... k+1,and(a,bj,ci) = (3k—i+2,2k—i+1,2(i —k) — 3) for
i=k+2,...,2k+1.

2° n=3k+ 1 for somek € N. Take(a;,bi,ci) = (i— L, k+i—1,2k—2i +3)
fori=1,2,...,k+1, and(a;,bi,c) = (3k—i+2,2k—i+1,2(i —k) — 2) for
i=k+2,...,2k+1.

3° n=3k— 1 for somek € N. Define(a;,bi,ci) = (i— 1, k+i—1,2k—2i+ 1)
fori=1,2,...,k and(a,bi,c) = (3k—i+1,2k—i,2i —2k—2) for i =
k+1,...,2k

For a binary sequence)n_1 = (&)}, let us definef (u, Vv, (€)n_1) = ¢, where
the sequencg;)! ; is defined asco = u, ¢; = v, and

36 14 ifg—1 ©1=L..n-1

{ 2ci_1+3c, if § =0,
Cir1=

The given sequencéan) and(b,) can be now rewritten a&, = (1,7, (€)n-1),

bn = f(1,7,(€)n-1) where(?)ir‘;ll is defined ag&; = &,_j. Using the induction
onnwe will prove thatf (1,7, (¢)n-1) = f(1,7,(€)n_1). This is straight-forward
to verify for n = 2 andn = 3, so assume that > 3 and that the statement is
true for all binary sequencés) of length smaller than. Notice thatf (au; +
Buz, avi+ BV, (&)m) = o f(U1,v1, (&)m) + BT (U2, V2, (€)m) (this easily follows
by induction orm). Assuming thag, = 0, we obtain:
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f(157v (S)n) f( ) ( )n 2)+3f(1v 7(€)n 1)

f(1,7,(&)n-2) +3f(1,7,(&)n-1)

f(1,7,(&)n-2) +3f(7,1(1,7,(en-1)1), (€)n-2)
( 17

23,14+ 3f(1,7,(&n-1)1), (€)n—2)-

Using 14+ 3f(1,7,(&r-1)1) = f(1,7,(0,&n-1)2) and 23= f(1,7,(0)1) we get

2
2
2
f

f(23,14+3f(1,7, (€n-1)1), (€)n-2)
= F(f(1,7,(0)1), f(1,7,(0,80-1)2), (€)n-2)
= (1,7,(¢),).

To finish the proof, it remains to see that fyr= 1 we have:

f(1,7,(e)n) = 3f(L,7,(e)n2) + F(1,7,(€)n-1)
= f(f(1,7,(1)1), F(1,7,(L,&n-1)2), ()n-2)
= £(1,7,(8)n).

Denote by(i, j) the cells of the table, and assume that the diagonal (eils
form separate rectangles. We will prove by induction thé ftossible to have

a perimeter ofom = (M4 1)2™2, The casen = 0 is obvious, and assume that
the statement holds for sonme > 0. Divide the 31 x 2™ hoard into four
equal boards. Each of the two off-diagonal squares has paim 2™ while the
other two can be partitioned into rectangles of total petéang,, each. The total
perimeter is therefore equal to 2- 2™+ 2pm = (m+ 2)2™*3,

Let us now prove the other direction, that the total perimetgatisfied > (m+
1)2™2, Assume that the table is partitioned imaectangles in the described
way. Denote byR; the set of those rectangles that contain at least one square
from theith row. Similarly, letC; be the set of rectangles that contain the squares
from theith column. Clearly the intersectid@ N R; contains only the diagonal
squarg(i,i). We certainly have

P_2<ig|al+§|a|>.

Let .# be the collection of all subsets of rectangles in the partitSince there
arenrectangles, we haje# | = 2". Let.%; denote the collection of those subsets
Sthat satisfy:(R \ (i,i)) € S, andCG NS C {(i,i)}. SinceZ1, %>, ..., Fom are
pairwise disjoint and.%;| = 2"~1G1-IRI+2 ysing the Jensen’s inequality applied
to f(x) =2 * we obtain:

1

2m
2N > on+2 ZZ*\QHR‘\ > QN2 om, 2 S(CiI+IRI) — on+mi2—n-5

This yields tog > (m+ 1) -2™1 which is the relation we wanted to prove.
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We will show that Cinderella can always make sure that &ch of her moves:
(i) The total amount of water in all buckets is less thd@;3and

(i) The amount of water in each pair of non-adjacent bucleessnaller than 1.
The condition (ii) ensures that the Stepmother won't be &blmake a bucket
overflow. Both (i) and (ii) hold in the beginning of the gamesstime that they
are satisfied after thkth round, and let us prove that in the roukd 1 Cin-
derella can make them both hold again. Denote the buckets.by, 5 (counter-
clockwise), and lek; be the amount of water in the bucketAfter thek + 1st
move of the Stepmother we haxe+ --- + x5 < g andx + X2 < 2 for eachi
(summation of indeces is modulo 5). It is impossible that x> > 1 for each

i hence we may assume that+ xs < 1. If X; + X2 + X5 < % it would be safe for
Cinderella to empty the buckets 3 and 4. Assume therefotethax, + x5 > %
Hencex; > % If both xo +x4 > 1 andxs + x5 > 1 hold then we must have
x1 < 3, a contradiction. Assume therefore thatt X4 < 1. If Xo + X3+ X4 < %’
she could empty 1 and 5, so assume that X3 + X4 > % This givesxz > %
X2 + g > (X1 + X2+ X5) + (X2 + X3+ X4) > 6 which yieldsx, > % Therefore at
least one ok; + x4 < 1 0rxz+ x5 < 1 holds, say the first one. Thus, if Cinderella
empties the buckets 2 and 3 the condition (ii) will be satisfi@ will hold as
well because; + x3 > %Jr % >1.

Letk > 3. We will prove that the longest cyclic route in(dk — 1) x (4k— 1)
board has length 4(2k — 1)? — 1]. Let us label the cells with 1, 2, 3, 4 using the
pattern from the figure 1, so that the top-left corner is laddly 1.

hlhlhlhldlh
oo [P ST S S S o
el lhAalmhlmAlmh P
U | | L] L4 T U [
Y mlal [
1 2 1 2 1 2 L'f r-‘ f'-' o] "1 f'-l "-|
Pl 1 famdlhan I
S A3 4 (3 |4 ol ool (o] [SH[eH [
Pl B B il B e B el B B
1 12 1 12 112 andianiias diasdiand oH |84
famll b Al Sl
3 14,13 |4 |3 |4 Dol ool (&5 e [oF [
AR H T P
mn dRumdhn B mn dB mn A8 um A8 nm
| el
Figure 1 Figure 2

Any four consecutive jumps lend on squares with differebela. Therefore,
each cyclic path has equal number of squares of each labelabkl 4 appears
exactly(2k — 1)? times, but we will prove now that the limp rook can’t visit af

them. Assume the contrary — that it is possible for a cyclidedo pass through
all the squares labeled by 4. If we paint all such squaresnaitely black and
white so that the top left square is black, we see that the euofiblack squares
is by 1 bigger than the number of white ones. Therefore, acyalte has two
consecutive black squares. Assume that these squaresoaeedénoted by.
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Without loss of generality we may assume that the part of dlueris as shown

in the figure 1. Since the route always visit84L, 2 in that order, immediately
before visitingx, the rook has to land on the cell labeled by 2 that is exactly
below . The rook has to leave by visiting 3 exactly to the right of it. Each
point of the two-dimensional plane must be all the time &itoethe left or to

the right of the rook when it is passing next to it. Howeveis ik not the case
with the point marked by. A contradiction. Therefore the rook can visit at most
4.((2k—1)?—1) squares in a cyclic route. The figure 2 shows how it is possible
to recursively make a route that only omits the central sgjaad visits all the
other squares labeled by 4.

14. We will prove the statement by induction. The case 1 is trivial, so let us
assume that > 1 and that the statement holds for 1, 2, n— 1. Assume that
a1 < --- < an. Letme M be the smallest element. Consider the following cases:

1° m< an: If an € M then if the grasshopper makes the first jump of size
the problem gets reduced to the sequemge. ., a,_1 and the seM \ {m},
which immediately follows by induction. Let us assume taat M. Con-
sider the followingh— 1 pairs:(ai,a; +an), - - -, (@&n—1,8n—1+an). All num-
bers from these pairs belong to the 2-element set \ {a,}, hence one of
these pairs, safey,ax + an), has both of its members outside Mf If the
first two jumps of the grasshopper atg andax + a,, it has jumped over at
least two members dfl: m anda,. There are at most— 3 more elements
of M to jump over, anch— 2 more jumps, so the claim follows by induction.

2° m > an: By induction hypothesis the grasshopper can start fronpthiet
S=aj+---+a, maken—1 jumps of sizesy, ..., an_1 to the left, and
avoid all the points oM \ {m}. If it misses the poinn as well, then we are
done (first make a jump of sizg, and reverse the previously made jumps).
Suppose that after making the jurapthe grasshopper landed at sitelf it
changes the jumgy to the jumpay, it will miss the sitemand all subsequent
jumps will lend outside oM becausen is the left-most point.

15. For each =0,1,...,9 denote by, the set of all finite strings whose terms are
from{i,i+1,...,9} (the empty stringp belongs to each dfl;). Define functions
m : Nj — N recursively: For eack € Ng we setmg(x) = 1+ the number of digits
of x (setmg(¢) = 1). Oncen, ..., m 1 are defined we construng as: Write
eachx € N; in the formx = xgixqi - - - % _1i% wherexg, ..., % € Ni1, and let

t
m (X) — 4”1+1(Xs) .
2,

Let us prove tham = mg satisfiesm(h(n)) < m(n) whenevem # @. If the last
digitofnis 0, them=1,0l; - - - 0l;0 for somdy, ... ., Iy € Ny andm(n) —m(h(n)) =
4m(®) > 0. Assume thah = Ler(d+1) for 9>d > e> 0 andr € Ny 1. If
L € N; for somei < e thenL = lgilqi---il; with Ig,... It € Ni;1. Denoten’ =
lrer (d+ 1). Thenh(n') =Trerdrd andmy(n) — my(h(n)) = 4™-+1(") — 4m-(h()),
To prove thatm(n) > m(h(n)) it suffices to prove thatn1(n’) > miy1(h(n')).
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Repeating this argument we reduce our problem to theicase There ardy,
..+ It, r € Ng11 such thatn = lge---elier(d + 1). Fore = d we need to prove
that 0< my(n) —mg(h(n)) = 4Me2("(@+1) _2.4M1(") This inequality suffices
even in the case < d because € Ny ; implies

ST — 4 AT

M. (F(d+1)) = 4

, and mg1(rdrd)

where 4 appeard —e—1 times in the exponents. §+ 1 = 9 thenmy(n) —

mg(h(n)) = 41 —2.4K > 0 wherek is the number of digits of. If d < 8

then we can write =ro(d+1)---(d+ 1)rs for somerg,--- ,rs € Ng2. We get
My 1(r) = 4Ma+2(0) 4 ... 4 4Ma+2(Ts) gnd My 1(r(d+1)) = mga(r) - 44md+2<¢)_

Hencemy(n) — mg(h(n)) = 4Me+() (447952 _2y 5 o,

Therefore the functiom is positive and decreasing on the sequench(n),

h(h(n)), ..., forcing this sequence to eventually become equa.tdhe only
way this can occur is if the last terms of the sequence are,1,@D

Denote byt andL the incenters oNABC and ABDA. From ZALI = ZLBA+
/LAB = 45° we see thaBlL|[EK. LetL’ be the intersection dPK andBI. From
/DLl = /BID — ZIDK = /A/4 = /LAl we conclude tha#, L, D, andL’
belong to a circle. HencgLAL' = 180° — ZLDL’' = 90°. Now consider\AKL'.
The segmerkE is the altitude fronK andZKAE = ZKL'E. We will now prove
that this is equivalent t& being the orthocenter akAKL’ being isosceles (with
KA = KL'). Denote byP andQ the intersections df'E andAE with AK andKL'
respectively. IfKA = KL’ then the statement is obvious. If this is not the case,
thenPQ intersectAL’ at some poinM. ThenKE is the polar line of the poiri!
with respect to the circumcircle of PQL’A, and sinceMA L KE we conclude
thatMA contains the center & Then we must havegAPL' = ZAQL' = 90°.

If E is the orthocenter ofAKL'A then fromAABP we conclude that 3A/4 +
45° — /A/4 = 90° which yields to/A = 90°. If KA = KL/, this together with
KA = AL = AL’ implies thatAAKL' is equilateral and’A/4 = Z/KL'E = 60° —
/LL'A=15". That means that A = 60°.

It is easy to verify that/A € {60°,90°} implies /BEK = 45°.

FromMK]|AB andML||AC we get/KML = ZBAC. Also, ZAQP = ZKMQ =
/MLK, because of the assumption tR& is a tangent té . ThereforeNAQP ~
AMLK hence

AQ ML PC

AP MK QB’
andAQ- QB = AP - PC. The quantity on the left-hand side of the last equality
represents the power of the po@tvith respect to the circumcircle @ ABC and
it is equal toOA? — OQ?. Similarly, AP- PC = OA? — OP2. ThusOA? — OP? =
OA? — OQ? implying OP = OQ.
Consider the excirclk, corresponding to the verteX Let X be the point of

tangency of the incircl& and BC, and X, the point of tangency df; andBC.
Similarly, let us denote by, andY; the points of tangency df; with AB and
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AC. Then we haveZZ, = ZB+ BZ; = BX 4+ BXg = BX +CX = BC = ZS. We
used the fact thaBX; = CX. On the other handiY; = CX; = BX = BZ =CS.
Denote bys the degenerated circle with cen®and radius 0. PointZ andC
belong to the radical axis of the circlsandk,. Similarly, we prove thaB andY
belong to the radical axis of the circlkgandr, wherer is the circle with center
R and radius 0. Thu& is the radical center af, s, andksy, henceGS= GR.

Denote byM andN respectively the points symmetric o with respect toG
andH. Notice that FAM = ZFAC+ Z/BEC = ZEBC+ ZCEB = ZFCE. From
AFDC ~ AFBAwe havefg = £8 and fromAAEB ~ ADEC we have42 =
BE . Therefore

FA BE AM

FC CE CE
henceAFAM ~ AFCE andZAFM = ZEFC. Similarly we prove that\FDN ~
AFBE andZAFN = ZEFC. Thisimplies thaF, N, andM are colinear. Since
andG are the midpoints dEN andEM it suffices to show thaEE is the tangent
to the circumcircle o ANEM. FromAFDN ~ AFBE we haveE2 = E¥, while
the similarity AFAM ~ AFCE implies thatE¢ = EE. Using AFDC ~ AFBA
again, we finally obtainE® = £%. Thus £ = ER and FE is tangent to the
circumcircle of AMEN.

LetA andB be two vertices of the poly- z B

gon P for which Sayaog is maximal. \4 N/
Let C and D be the points symmet-

ric to A and B with respect tdO. Let c A

WXYZ be the parallelogram such that
A, B, C, andD are the midpoints of
XY, YZ, ZW, andWX, andWX||OA,
XY||OB. The polygonP is contained W ) X
insideWXYZ. LetU, V, M, andN be

the intersections dP with XZ andWY such that the order of points on lines is
W-M—-N-Y andX —U —V — Z. There are two parallel linasandv through

U andV such thaP is within the strip between andyv; similarly, there are two
parallel linesn 5 N andm > M such thaP is within the strip between these two
lines. The linesl, v, n, andm determine another parallelograsi GH. We will
prove thatSergn < V25 or Swxyz < V25.

By performing affine transformations to the plane, the satibthe areas of the
figures don’t change, and we can choose the transformaticssch a way that
WXYZ maps to a square. Thé&FGH maps to a rectangle, aitimaps to an-
other convex polygon. We may thus assume WWatYZ was a square to start
with, andEF GH was a rectangle. L&t’ be the projection of toWwz, and letN’

be the projection oN to YX. Denotea = OA, x=ZV’, andy = YN'. ThenS >
Sanevembu = 4Sacov +4Saroan = 2a(a—X) +2a(a—y) = 2a(2a— (X+Y)).
We also haveSyxyz = 4a® and Sepgy = 40V -ON = 8(a—x)(a—y). If we
assume thaByxyz > V25 andSergr > V20, multiplying these two inequal-
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ities gives us: 38%(a—x)(a—y) > 8a%(2a— (x+Y))?, which after simplification
becomes ¥y > (x+Y)?, or equivalentlyx —y)? < 0, a contradiction.

Assume that the perpendicular fré@nto CD and the perpendicular froi, to
AB intersectH;H, at S, andS, respectively. We will prove thdt; S, : HiH, =
H1S : HiH, which will imply S = S,. Let M = S E; NPH; andM, = SSEoN
PH,. It suffices to establish the relatith M1 : H{P = PM5 : H2P

Let us denote byN; and N, the mid-

points ofPH; andPH,. Without loss of
generality, assume thdl; is between
P andNz, and consequentli, is be-

tweenP andM,. Our goal is to prove
that HiMy _ PM2 “or after subtracting 1

FiN; — PNy
from both S|des
MiN;  MoNo
= : (1)
HiNy PN,
From E1M1||PH2 and E2M2HPH1 we \
conclude that ZNoMoE, = 180 — A B Q

Z/E1M1N;. Observe thatE1N1HP01
hence/M;E1N; = Z0,PH, = ZDPH, — ZAPO;. From ADCP we obtain the

equality Z/DPH, = 90° — ZCDP and from AABP we have/ZAPO; = 90° —
/ABP. Therefore/M;E;N; = ZABP — ZCDP. In a similar way we prove that

ZMQEQNQ = ZOszl = /ABP— ZCDP which glves USCMlElNl = ZMZ%ZNZ'
2No

BN = G-
Hence in order to prove (1) we need to verify thikt = 2, or equivalently,
';_Sﬁ = %. FromPH; = 20:X whereX is the midpoint ofAB we see tha@ =

AO, 1 1

1
20X — 2cos AOX — Zcos/APs- Analogously we prove thé_ 2ces/cPp and
this completes ‘the proof of the required statement.

Let us denote by, B, andy the angles oAABC. Then we calculate’BI X =
ZXIC = %LBIC =45 + § and similar two formulas hold farZI X and ZZIY.
If we denote byP andQ the feet of perpendiculars fromto CX andCY then
=1Q. SinceZPIX = ZPIC— ZXIC = (90° — ZXCl) —45° — § = 45" —
y= %, and similarlyZQlY = ¢, we deduce thatX /cos§ = IY/cos%. If we
denote the previous quantity oy we getiX = pcos?2, 1Y = pcos4, and analo-
gously,l1Z = pcos Applying the cosine theorem thZ1 X gives us tha?ZX? —
Z12=1X2-2IX-Zl -cos(90° + %X} = p? (cog 4 + 2 cosg cosy sin9;Y). Us-
ing the similar relation foZY? — ZI2 and the assumptiofiX = ZY we get:

_ a B a_.a y B_. B y
O_cos’-4 cosz4+200525|n4c0§4 ZcosZsm cos2

a_.y Yy B_.vy_ Y
Jr200§45|n4cos4 200§45|n40034

= (cosz% —coszg) : (1—sing) +co§§ (sin% —sing) .
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We now use the formulas cb — cog'Y = (cog2X) — cog2Y)) = —sin(X +

Y)sin(X —Y), and sirX — sinY = 2sin*5¥ cos*$Y to obtain:

0=sin?=FP (200§%cosa+ﬁ—(1—sinz)sina+ﬁ). (1)

4 4 2 4

Let E be the expression from the last parenthesis. Sﬁ%: 45° — }1’, then:

V2E = (1+ cosg) (cos£+sin£) — (1—sing) (cos%—sin%r/)
4

_ 2sinY Y c0sY —sinYsinY YsinY 1 sinY cos?

= 25|n4+c032 cos4 sm25|n4+0052 sm4+smzcos4.
Hencev/2E = 2sin +cos¥ +sin¥Y = 2sin¥ + \/Esin(45° + 374") Clearly,
the last quantity is positive as the sin is positive functar{0, 180°). Thus from
(1) we geta = 3. Similarly, we prove tha = y andAABC is equilateral.

Denote byki, ky, andks the incircles
of AABM, AMNC, and AADN, re-
spectively. LetR, S, T be the points
of tangency ofk; with AB, BM, and
MA; U, V, W the tangency points
of k3 with ND, DA, and AN; and
P and Q the points of tangency of
tangents fromC to k3 and k; dif-
ferent thanCD and CB, respectively.
Assume that the configuration of the
points is as in the picture. From
CD+ AB =CB+ DA we getCU +UD + AR+ RB = DV +VA+ BS+ SC which
together withDU = DV, AR= AV +WT = AV +WT, andBR = BSimplies that
CU +WT = CS= CQ. On the other han@U +WT = CP+WT > CP+ PQ
becaus®Q < WT and the equality holds if and only HQ is a common tangent
of the circlesk; andksz. We conclude tha€Q > CP+ PQ. The triangle inequality
yieldsCQ = CP + PQ henceC, P, andQ are colinear.

We now have thatI3Cl; = %4DCB =90° — Z1,CM = ZI31,M, henceC belongs

to the circle circumscribed aboutl4l,13. The Simson’s line corresponding to
C bisects the segmefH, whereH is the orthocenter af\l;1513. It remains to
notice that the ling is the image of the Simson'’s line under the homothety with
centerC and coefficient 2. Indeed, the reflections®fivith respect td1l, and
I213 belong tog becausé |, andl,l; are the bisectors of CMN and ZCNM.

Assume the contrary thata;  ; = a (modn), fori =1,2,...,k (summation of
indices is moduld). The casék = 2 is trivial as we haveja, = a; andajap =

a; which yields to immediate contradictiom = a,. Here and in the sequel,
all of the congruences are moduio Assume that k i < k. Multiplying the
congruenceya,1 =@ bya;---a_1 we geta;---aj.1 = a; - - - g;. By induction
we get thaby - - - ax = 3. Since everything is cyclic in analogous way we obtain
a; - - - a¢ = ap which yields toa; = ap and this is a contradiction.
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(a) To eactm € N we can correspond a sequerisg ..., Ssp) of numbers from
{0,1} such that

_ |0, if n+iis balanced,
1 1, if n+iis not balanced.

Since there are at most2sequences that correspond to natural numbers,
we see that there ageb € N that correspond to the same sequence. For such
a choice ofa andb the numbef(i) is balanced for eache {1,2,...,50}.

(b) Assume thaa < band thaf(n) = (n+a)(n+b) is balanced for eaame N.
For eachk > a, consider the numbet= k(b —a) —a. ThenP(x) = (b—
a)?k(k+ 1) is balanced, which means thaandk + 1 areequibalanced (if
one is balanced then so is the other) whendvera. Then all numbers
greater tham are equibalanced which can’t be true, as squares are bdlance
but primes are not.

Assume the contrary: There are finitely many prime nusbper p, ..., Pm
such that no other prime can be a divisorf¢f) asn € N. Assume that, ...,
am are non-negative integers for whidt{l) = pfl ---p%m. For any sequence
B = (B,-.-,Bm) satisfyingfy > ay, ..., Bm > dm, consider the numbea =

p[fl “e p%"‘. Assume that (ag +1) = p}’l .- pth. for somey, - - -, ym € No. Since
ag | f(ag+1)— f(1), we can conclude thag = ay, ..., ym = am hencef (ag +
1) = f(1). If nis a positive integer for whicti(n) # f(1), thenag +1—n|
f(ag+1) — f(n) = f(1) — f(n). This relation has to hold for every sequeifte
satisfyingB, > az, ..., By > a1, which is impossible.

We will prove thah < 4 by showing that there is no sequence of length 5, and
that there is a sequence of length 4 satisfying the condition

Assume thaty, ..., as is a sequence of length 5. Iff2y for somek < 3, from
a§+1 +1=(ax+1)(ak;2+ 1) we see that 2a, 1 as well. Notice thaa; anday
are even. Indeed, if Ray for k € {1,2}, then 2t ax 1 and 2f a,;». We then have
aZ,,+1=2 (mod 4) while 4 (ax+ 1)(a; 2+ 1), which is contradiction.
Sincea; anda, are even, we get fr0m§+ 1=(a3+1)(azg+1) thatagis even as
well. We now haveag + 1| a5+ 1 andaz + 1 | a§ + 1. Let us prove that there are
no two positive even integessandy satisfyingx+1 | y?+ 1 andy + 1 | x* 4 1.
Assume the contrary, théx,y) is one such pair for whick+ y is minimal and
x>y. Letd = gcd(x+1,y+1). Fromd | x+ 1 one getsd | x> — 1. Sinced |
y+1|x%+ 1 we derive thatl | (x> + 1) — (X2 — 1) = 2. Sincex+ 1 is odd we see
thatd = 1. Thereforex+ 1| y? + 14 x> — 1= x?+y? andy + 1 | x* +y? imply
(x+1)(y+1) | 2 +y?. There existsn € N such thatm(x+ 1)(y + 1) = x> +
y2. Consider the quadratic polynomR(A ) = A2 —m(y+ 1)A —m(y+1) +y2.
SinceP(x) = 0, there exists a positive integéisuch thaP(A) = (A —x)(A —x).
Fromx+x =m(y+1) andxx' = y? —m(y+ 1) we get thak’ is even ang?+ 1=
(x+1)(X'+1). We now must have <y < x, hencgX',y) is another pair of even
natural numbers such thet+ 1| y?+ 1 andy + 1| X2+ 1, a contradiction.

One sequence of length 4ag = 4,a, = 33,a3 = 217,84 = 1384.
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Assume that there exisEs. Z — Z and a polynomiaP with integer coefficients
such thaff"(x) = x has exactlyP(n) solutions for eactm € N. Fork € N denote
by B(k) the set of thos& such thafl¥(x) = x but T' (x) # xforall 0 < | < k. Take
anyx € A(n)NB(k), and assume that= ak+b, forae Np and 0< b <k-—1.
Thenx = T"(x) = T°(T%(x)) = T°(x). We conclude that = 0 andk | n. Hence
A(n) = Uyn B(K) and moreover

A =T 1BK)

kln

Assume now thax € B(n), and consider the sequen{®' (x)}5. EachT!(x)
belongs toA(n) sinceT'(x) = T (T"(x)) = TY(T'(x)). If T'(x) = T'*(x) for
0<i<n-landO< j<n—1,thex=T"(x)=T" (T!(x)) =T (T*i(x)) =
TMI(x) = TI(T"(x)) = TJ(x) which means thaj = 0. Therefore T'1(x) #
T'2(x) wheneveiiy # i andiy, i, € {0,1,...n—1}. In addition, each of"(x)
belongs tdB(n). This means thaB(n) partitions into sequences nklements in
each, and thus | B(n).

Let p be a prime number. We have(p) = |A(p)| = |B(1)| + |B(p)|. If g is
also prime, therP(pq) = [B(1) + [B(p)| + [B(a)| + |B(pa)| henceP(pq) =
[B(1)| + |B(qg)| (mod p). However, fromP(pg) = P(0) (mod p) we get that
P(0) — |B(1)| — |B(q)| is divisible by p. If we fix g, this remains to hold for
each primep. ThereforeP(0) = |B(1)| + |B(q)| = P(q). However, this is now
true for every primay, henceP must be constant, contrary to our assumptions.

For eaclk € N there exisig, € Z and a polynomiaP(x) of degreek — 1 with
integer coefficients such thef(x) = x¥ 4 R (x— 1) + gk Indeed, the coefficients
of R(x) = c_1X< 14 .- + ¢ form a system of linear equations which we can
explicitly solve (we can see thgt_; = 1). The sequend®, = a, — F(n) satisfies

bo

the recursive relatiob, = b”—r;l — X Inductively we prove thab, = 2 — 3.

st Lit, hencean — R (n) = 2-HO _ & sn-Liy All of ay— F(n) € Z, andan—
R(n)| < W + % + |Ok| - Zfozo%z — 0. Hence we conclude thag = R(0)
andog=0.

We will finish the proof by showing thaly is even only wherk = 2 (mod 3).
We start with the equalitfi(x) = xP(x) — X — B(x — 1) — g = 0 and use the
fact thatx(x+ 1)Mk(X) — N+1(X) — Mk+2(X) = 0. After simplifying this becomes
equivalent taxTy(X) = Tu(Xx— 1) + 2xP(x — 1) + 2xqx — (Ok + Oks-1 + Gkr2), for
Tie(X) = X(X+ D)R(X) — R 1(X) — Py 2(X) — Gex. ThereforexTy(x) — T(x— 1) =
Ok + Ok+1+ Gkr2 (Mod 2). For each polynomidlone of the two identities hold:
either f (x) = x (mod 2) for allx € Z, or f(x) = 0 (mod 2) for allx € Z. Since
XTk(X) — Tk(x — 1) is a constant polynomial modulo 2, it must be 0, apd-
Ok+1+ Okr2 = 0. We can easily calculatgy = —1, andge = 0, and now by
induction it is straight-forward to establigly = 0 (mod 2) if and only itk = 2
(mod 3).

We will prove a stronger statement by assumingatatdb are perfect squares.
Assume that each g, = y/(a"— 1)(b"— 1) is an integer. Consider the Taylor
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representation of (x) = (1—x)¥2 =y oyx<for x € (—1,1) (the sequencey
is fixed here). There exist real numbéeg) )« >0 such that

gxy) = (1—x)2(1—y)Z = Z cuXy, forallxye (-1,1). (1)
k,I>0

Thereforepn = ¥y >0k, (\/%/(akb'))n. Takeko, lp € N for whichak > v/ab

andblo > v/ab. Consider the polynomid(x) = [, [1,%(a"b'x— v/ab). There
aredo, ..., dy, € Z such thaP(x) = iki'g dix. For eacm > 0 denote

Qo Vab Vab Vab

n n
On= ) dipnii= T Ck,|P<—> = Yl <—> )
i; . k,Zzo (akbl ) ab k>kog“>|o ab

wherey = ¢ P (\/a_b/(akb' )). The series fooy, is absolutely convergent be-

cause it is a finite linear combination of absolutely coneetgseries inpn .
Sincevab/(ah') < max{1/a,1/b} < 1/2 theno, < 30,_1. This means that
limn— on = 0, and since all oby, are integers there exisk$ such thato, =0
forn> N. Forn> N we have;ikglg dipnsi = 0.

Assume first thag # b! for each pair(k,|) of positive integers. Solving the
system of recursive equations fg,)n>n we find constantsy for 0 < k < ko,
0<1 < lg such thaton = 12, 5% & (\/a_b/(akb'))n. This together with (1)
implies that if (x,y) = (1/a",1/b") for somen > N thenyp_o 31 o Ck1XY =

5 0 51% pe X<y These two are Taylor series fgtx,y) and have to be the
same. Hencey| =g if k <kgorl <lo. If eitherk > kg or | > Ig thency =

0. We conclude thag(x,y) has a finite Taylor expansion around 0, which is
impossible.

In the case that there akeandl such thagk = b', there would exist an integer
such tha = p', andb = pX. In a similar way we get a contradiction by proving
the finiteness of the Taylor expansion(af— x')/2(1 — xk)%/2,
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Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notaticsedtheory, algebra, logic,
geometry (including vectors), analysis, number theorgl(ding divisibility and
congruences), and combinatorics. We use this notatiorglilye

We assume familiarity with the basic elements of the gamédets (the movement
of pieces and the coloring of the board).

The following is notation that deserves additional clasfion.

o A(A,B,C), A—B—C: indicates the relation dfetweenness, i.e., thatB is be-
tween A and C (this automatically means th#, B,C are different collinear
points).

o A=I1Nl,: indicates thaf is the intersection point of the linésandl,.

o AB: line throughA and B, segmentAB, length of segmenfB (depending on
context).

o [AB: ray starting inA and containindg.
(AB: ray starting inA and containindg, but without the poinA.
(

o [AB]: closed intervaAB, segmenfB, (AB) U{A,B}.

o (AB]: semiopen intervahB, closed aB and open af, (AB) U {B}.
The same bracket notation is applied to real numbers,[a,8),= {x|a<x<

b}.
o ABC: plane determined by poings B, C, triangle ABC (AABC) (depending on
context).

AB): open intervalAB, set of points betweef andB.

o [AB,C: half-plane consisting of linéB and all paoints in the plane on the same
side of AB asC.

o (AB,C: [AB,C without the lineAB.



24 A Notation and Abbreviations

D —
o (@, b),a- b:scalar product ol and b .

o a,b,c a,p,y: the respective sides and angles of triarBE (unless otherwise
indicated).

o k(O,r): circlek with centerO and radius.
o d(A, p): distance from poinA to line p.

© SaAy A [A1A2. . Ay area ofn-gonAiA; ... Ay (Special case fon = 3, Sagc:
area ofAABC).

o N, Z, Q, R, C: the sets of natural, integer, rational, real, complex nerslfre-
spectively).

o Zn: the ring of residues modulg n € N.
o Zp: the field of residues modulp, p being prime.

o Z[x], R[x]: the rings of polynomials i with integer and real coefficients respec-
tively.

o R*:the set of nonzero elements of a riRg

o Rla], R(a), wherea is a root of a quadratic polynomial R[x|: {a+ba |a,be
R}.

o Xo: XU {0} for X such that G# X.

o Xt, X7, aX+b,aX+bY: {x|xe X,x> 0}, {x]| xe X,x< 0}, {ax+b|xe X},
{ax+by|xe X,y € Y} (respectively) foiX,Y CR, a,b e R.

o [X], [X]: the greatest integer smaller than or equal.to
o [x]: the smallest integer greater than or equal.to

The following is notation simultaneously used in differeohcepts (depending on
context).

o |AB|, ||, |S: the distance between two poiB, the absolute value of the num-
berx, the number of elements of the skfrespectively).

o (xy), (mn), (a,b): (ordered) paix andy, the greatest common divisor of inte-
gersmandn, the open interval between real numbaendb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviatas much as possible.
However, one nonstandard abbreviation stood out as pkntigwonvenient:

o w.l.o.g.: without loss of generality.
Other abbreviations include:

o RHS: right-hand side (of a given equation).
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LHS: left-hand side (of a given equation).

QM, AM, GM, HM: the quadratic mean, the arithmetic mean, te®metric
mean, the harmonic mean (respectively).

gcd, Icm: greatest common divisor, least common multipgsgectively).
i.e.:in other words.

e.g.: for example.
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Codes of the Countries of Origin

ARG
ARM
AUS
AUT
BEL
BLR
BRA
BUL
CAN
CHN
COL
CRO
CuB
CYP
CZE
Czs
EST
FIN
FRA
FRG
GBR
GDR
GEO
GER
GRE

Argentina
Armenia
Australia
Austria
Belgium
Belarus
Brazil
Bulgaria
Canada
China
Colombia
Croatia
Cuba
Cyprus

Czech Republic
Czechoslovakia

Estonia
Finland
France
Germany, FR

United Kingdom

Germany, DR
Georgia
Germany
Greece

HKG
HUN
ICE
INA
IND
IRE
IRN
ISR
ITA
JAP
KAZ
KOR
KUw
LAT
LIT
LUX
MCD
MEX
MON
MOR
NET
NOR
NZL
PER
PHI

Hong Kong
Hungary
Iceland
Indonesia
India

Ireland

Iran

Israel

Italy

Japan
Kazakhstan
Korea, South
Kuwait
Latvia
Lithuania
Luxembourg
Macedonia
Mexico
Mongolia
Morocco
Netherlands
Norway
New Zealand
Peru
Philippines

POL
POR
PRK
PUR
ROM
RUS
SAF
SER
SIN
SLO
SMN

SPA
SVK
SWE
THA
TUN
TUR
TWN
UKR
USA
USS
uzB
VIE
YUG

Poland
Portugal
Korea, North
Puerto Rico
Romania
Russia
South Africa
Serbia
Singapore
Slovenia
Serbia and
Montenegro
Spain
Slovakia
Sweden
Thailand
Tunisia
Turkey
Taiwan
Ukraine
United States
Soviet Union
Uzbekistan
Vietnam
Yugoslavia



