Moldovan Team Selection Tests 2008

First Test

- 1. Let *p* be a prime number. Find all non-negative integers *z* and *y* such that $x^3 + y^3 3xy = p 1$.
- 2. A set $\{1, 2, ..., 3k\}$ is said to have a *property D* if it can be partitioned into disjoint triples so that in each of the triplets there is one number that is equal to the sum of the other two.
 - (a) Prove that $\{1, 2, \dots, 3324\}$ has the property *D*.
 - (b) Prove that $\{1, 2, \dots, 3309\}$ does not have the property *D*.
- 3. Let $\Gamma(I, r)$ and $\Gamma(O, R)$ be the incircle and the circumcircle of $\triangle ABC$, respectively. Consider all triangles that are simultaneously inscribed in $\Gamma(O, R)$ and circumscribed about $\Gamma(I, r)$. Prove that the centroids of all such triangles belong to a circle.
- 4. A non-zero polynomials $S \in \mathbb{R}[X, Y]$ is called *homogenous of degree d* if there is a positive integer *d* such that $S(\lambda x, \lambda y) = \lambda^d S(x, y)$ for all $x, y, \lambda \in \mathbb{R}$. Assume that $P, Q \in \mathbb{R}[X, Y]$ are two polynomials such that *Q* is homogenous of degree *d* and $P \mid Q$. Prove that *P* is homogenous of degree *d* as well.

Second Test

1. Find all pairs (x, y) of real numbers that solve the following system:

$$\begin{cases} x^3 + 3xy^2 = 49, \\ x^2 + 8xy + y^2 = 8y + 17x. \end{cases}$$

2. Let a_1, \ldots, a_n be positive real numbers whose total sum is less than or equal to n/2. Find the minimal value of

$$\sqrt{a_1^2 + \frac{1}{a_2^2}} + \sqrt{a_2^2 + \frac{1}{a_3^2}} + \dots + \sqrt{a_n^2 + \frac{1}{a_1^2}}.$$

- 3. Let ω be a circumcircle of $\triangle ABC$ and let *D* be a fixed point on *BC* different than *B* and *C*. Let *X* be a variable point on *BC* different than *D*. Denote by *Y* the second intersection point of *AX* and ω . Prove that the circumcircle of $\triangle XYD$ passes through a fixed point.
- 4. Find the number of even permutations of $\{1, 2, ..., n\}$ with no fixed points.

Third Test

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

- 1. Determine a subset $A \subset \mathbb{N}$ with 5 different elements such that the sum of the squares of its elements is equal to their product.
- 2. Let p be a prime number and k, n be positive integers such that p and n are relatively prime. Prove that $\binom{n \cdot p^k}{p^k}$ and p are relatively prime.
- 3. The bisector of the angle *ACB* of $\triangle ABC$ intersects the side *AB* at *D*. Consider an arbitrary circle ω passing through *C* and *D* that is tangent to neither *BC* nor *CA*. Let *M* be the intersection of ω with *BC* and *N* the intersection of ω with *CA*.
 - (a) Prove that there is a circle σ such that *DM* and *DN* are tangent to σ at *M* and *N*, respectively.
 - (b) Denote by *P* and *Q* the intersection of the lines *BC* and *CA* with σ, respectively. Prove that the lengths of *MP* and *NQ* do not depend on the choice of ω.
- 4. A non-empty set *S* of positive integers is called *good* if there is a coloring with 2008 colors of all positive integers so that no number from *S* is the sum of two different positive integers (not necessarily from *S*) of the same color. Find the largest value that *t* can take so that the set $S = \{a + 1, a + 2, ..., a + t\}$ is good for every positive integer *a*.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com